На правах рукописи

Иванов Денис Александрович

ИССЛЕДОВАНИЕ СТРУКТУРНО-КОНФОРМАЦИОННЫХ ХАРАКТЕРИСТИК СЕЛЕНСОДЕРЖАЩИХ НАНОСТРУКТУР НА ОСНОВЕ ВОДОРАСТВОРИМЫХ ПОЛИМЕРОВ

Специальность 02.00.04 - физическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

> Санкт-Петербург 2011

Работа выполнена на кафедре теоретической и прикладной химии факультета химии и экологии Санкт-Петербургского государственного университета технологии и дизайна

Научный руководитель:	доктор химических наук, профессор Новоселов Николай Петрович
Официальные оппоненты:	Доктор химических наук, профессор Пак Вячеслав Николаевич
	Доктор технических наук, профессор Кириллов Вадим Васильевич
Ведущая организация:	Учреждение Российской академии наук Институт химии растворов им. Г.А. Крестова РАН г. Иваново
Защита состоится 23 декабря 2011 года в 12 ч Д 212.236.03, Санкт-Петербургский государст Санкт-Петербург, ул. Большая Морская, 18, а	гвенный университет технологии и дизайна, 191186,
С диссертацией можно ознакомиться в библи университета технологии и дизайна.	отеке Санкт-Петербургского государственного
Автореферат разослан ноября 2011 года.	
Ученый секретарь диссертационного совета	Е.С. Сашина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время можно отметить постоянно растущий интерес исследователей к синтезу и изучению свойств наночастиц и наносистем. Этим исследованиям посвящено значительное число оригинальных статей и монографий. Очевидно, что в формировании полимерных наноструктур ключевую роль играют силы дальнодействия между наночастицами и макромолекулами, а также — между образующимися наноструктурами. Свойства наноструктур, не в последнюю очередь, зависят и от явлений на межфазовых поверхностях наночастицаполимер, наночастица — растворитель и полимер-растворитель. Существует также обратная связь: морфология полимерных наносистем определяет характер процессов формирования наноструктур. Эти факторы в значительной мере обусловливают уникальные свойства полимерных нанокомпозитов и, в конечном счете, их применение.

В отсутствие стабилизаторов наночастицы металлов и неметаллов в водных растворах агрегативно неустойчивы. Один из наиболее перспективных способов получения стабильных наночастиц металлов/неметаллов – восстановление их ионных форм в растворах полимеров. При этом в ходе псевдоматричного синтеза происходит взаимное "узнавание" макромолекул и формирующихся наночастиц, что обеспечивает контроль их размеров путем варьирования структуры и ММ полимеров.

Особый интерес представляют наночастицы селена, поскольку этот химический элемент имеет уникальные фотоэлектрические, полупроводниковые, каталитические и биологические свойства. Известно, что дефицит поступления селена в организм человека и животных вызывает одну из разновидностей гипомикроэлементоза, называемую гипоселенозом. Наибольшему риску развития гипоселенозов подвержены жители регионов с выраженным недостатком селена в почвах и продуктах питания. Наиболее ярким проявлением эндемического гипоселеноза является кэшаньская болезнь, получившая название от города Кэшань в провинции Хэйлунцзян на северовостоке Китая. К другим эндемическим районам можно отнести Восточную Финляндию, Новую Зеландию, Беларусь, некоторые районы Украины, Ярославскую область, и некоторые районы северо-запада России.

С другой стороны, избыточное потребление селена может приводить к хроническим отравлениям, признаками которых могут являться затрудненное дыхание, нарушение движения и позы, прострация, диарея. Зачастую отравление может приводить к летальному исходу в течение нескольких часов.

В качестве потенциальных лекарственных средств были изучены различные неорганические и органические соединения селена, и было показано, что антиоксидантная и прооксидативная активности существенно зависят от формы селена.

При исследовании наночастиц элементарного селена, образующегося в результате жизнедеятельности некоторых бактерий, а также полученных восстановлением селенита натрия глютатионом или аскорбиновой кислотой обнаружено, что они обладают крайне низкой антиоксидантной активностью, при этом образующиеся гидрозоли селена метастабильны и быстро агрегируют в водном растворе. Таким образом, элементарный селен, получаемый обычными биотехнологическими и химическими методами малоперспективен как компонент потенциальных лекарственных веществ.

Цель и задачи работы. Целью работы было определить влияние, которое различные факторы (например, молекулярная масса, жесткость полимера, соотношение реагентов в реакционной смеси, строение мономерного звена и проч.) оказывают на структурно-конформационные характеристики селенсодержащих наноструктур на основе водорастворимых полимеров.

В соответствии с поставленной целью требовалось решить следующие задачи:

- исследовать влияние молекулярной массы полимерной матрицы на структурноконформационные характеристики селенсодержащих наноструктур при неизменном массовом соотношении селен:полимер в растворе;
- исследовать, какое влияние на характеристики наноструктур оказывает строение мономерного звена при фиксированной молекулярной массе и сопоставимой жесткости полимерной матрицы, и при неизменном массовом соотношении селен:полимер в растворе;

- исследовать влияние массового соотношения селен-полимер в растворе на структурно-конформационные характеристики наноструктур при использовании в качестве матрицы одного и того же полимера фиксированной ММ.

Научная новизна. Для всех исследованных систем установлен факт адсорбции значительного числа макромолекул на наночастицах селена *с формированием сверхвысокомолекулярных плотноупакованных наноструктурь, форма которых близка к сферической.* Установлена направленность корреляции между величиной ММ полимера и средней плотностью наноструктуры, при этом более плотно упакованные наноструктуры обладают устойчивостью к воздействию гидродинамического поля. Обнаружено, что жесткоцепные макромолекулы производных целлюлозы на наночастицах селена могут сформировать различные типы наноструктур с локализацией полимерной фазы в коронарной области с различающейся плотностью. Показано, что увеличение массовой доли селена в растворе сопровождается существенным ростом ММ наноструктур и их средней плотности, при этом их размеры и форма практически не зависят от концентрации селена. Установлено, что массовое соотношение селен:полимер 0,1 является «особой точкой». Показано, что комплекс полимерный стаблизатор – наночастица селена, полученный в таких условиях, находится вблизи границы его термодинамической устойчивости.

Практическая значимость. Наночастицы аморфного селена (нано-а-Se⁰) с размерами 3 – 500 нм уже используются в качестве высокочувствительных биосенсоров для иммуноанализа и хроматографически мобильных аффинных реагентов. Даже при очень низких концентрациях селена в воде (0,005–0,1%) его частицы могут адсорбировать на поверхности антигены и антитела. Известно, что селен, входящий в состав пищевых продуктов, оказывает антибластическое действие, а между содержанием селена во внешней среде и частотой поражения населения злокачественными опухолями существует определенная зависимость. Известно также, что в условиях дефицита селена наблюдается развитие миокардиодистрофии, ишемической болезни сердца, инфаркта миокарда и хронического гепатита различной этимологии.

Личный вклад автора состоял в участии в формулировании целей и задач работы, непосредственном проведении экспериментов по статическому светорассеянию, вискозиметрии, части экспериментов по динамическому светорассеянию, и обработке результатов измерений. По итогам обсуждения полученных результатов с научным руководителем автором были сформулированы выводы и итоги работы.

На защиту выносятся результаты исследования структурно-конформационных характеристик селенсодержащих наноструктур на основе водорастворимых полимеров

Апробация работы. Основные результаты работы были представлены на российских и международных конференциях, в числе которых: 40th International Symposium on Macromolecules "World Polymer Congress MACRO 2004" (Paris, France, 2004), International Conference Dedicated to 50th Anniversary of A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences "Modern Trends in Organoelement and Polymer Chemistry" (Moscow, Russia, 2004), Cанкт-Петербургская конференция молодых ученых "Современные проблемы науки о полимерах" (Санкт-Петербург, 2005), 5th International Symposium "Molecular Mobility and Order in Polymer Systems" (Saint-Petersburg, Russia, 2005), «Малый полимерном конгресс» (Москва, Россия, 2005), II Санкт-Петербургская конференция молодых ученых «Современные проблемы науки о полимерах» (Санкт-Петербург, 2006), Еигореап Сегатіс Society «Geometry, Information and Theoretical Crystallography of the Nanoworld» (Saint-Petersburg, 2007), Международная научная конференция «Современные тенденции развития химии и технологии полимерных материалов» (24-26 ноября 2008, СПб, Санкт-Петербургский государственный университет технологии и дизайна).

Публикации по теме диссертации. Основные результаты работы изложены в 14 публикациях, в том числе 5 статьях в российских журналах и 9 тезисах докладов на российских и международных конференциях.

Структура и объем работы. Диссертационная работа объемом 120 страниц машинописного текста состоит из введения, обзора литературы по теме диссертации, описания использованных экспериментальных методик, экспериментальной части, обсуждения результатов, выводов и списка использованной литературы из 87 наименований. Содержит 47 рисунков и 5 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Ввеление

Во введении обоснована актуальность работы, ее научная новизна и практическая значимость. Приведены цели и задачи работы.

Обзор литературных данных

Эта глава состоит из двух частей: «Физико-химические и биологические свойства селена» и «Свойства и особенности наноструктурированных материалов». В первой части дается представление о селене как химическом элементе, возможностях его технического применения, и о влиянии, которое дефицит или избыток селена оказывает на живые организмы. Отдельно рассмотрена биологическая активность селена в различных формах, в т. ч. его наночастиц в отсугствие полимерных стабилизаторов.

Во второй части приведена классификация наночастиц и описаны возможные способы их стабилизации. Особое внимание уделено возможным способам стабилизации наночастиц в растворах с использованием различных полимерных матриц, возможным вариантам морфологии получаемых наноструктур и их зависимости от типа стабилизирующих агентов и скорости восстановления.

Объекты и методы исследования

Данная глава описывает использованные методы исследования и те полимеры, которые были использованы для стабилизации наночастиц селена. Дается представление о теоретических основах методов статического и динамического светорассеяния, двойного лучепреломления в потоке¹, вискозиметрии и спектрофотометрии². Приведены методы обработки и интерпретации полученных экспериментальных данных.

В качестве объектов исследования выступали селенсодержащие наноструктуры, полученные путем восстановления в воде селенистой кислоты аскорбиновой кислотой в присутствии одного из следующих полимерных стабилизаторов:

- 1. Поли-N,N,N,N-триметилметакрилоилоксиэтиламмоний метилсульфата (ПДМАЭМ)
- 2. Оксиэтилцеллюлозы (ОЭЦ).
- 3. Карбоксиметилцеллюлозы (КМЦ).
- 4. Метилцеллюлозы (МЦ).

Выбранная совокупность полимерных матриц (ПМ) и методов исследования позволила провести разностороннее исследование и оценку влияния различных факторов на процессы формирования и структурно-конформационные характеристики полимерных селенсодержащих наноструктур.

Экспериментальная часть

Эта глава содержит описание постановки задачи, данные, полученные путем экспериментов и обсуждение результатов.

¹ Автор выражает благодарность Валуевой С.В. за предоставленные результаты измерений ДЛП.

² Автор выражает благодарность Валуевой С. В. и Боровиковой Л.Н.за предоставленные результаты спектрофотометрических измерений.

M _w ×10 ⁻⁶	$k^* \times 10^{-3},$ c^{-1}	M _w *×10 ⁻⁶	N*	$A_2^* \times 10^4$, cm^3 моль/ Γ^2	Rg*,	R _h *,	ρ*	Φ^* , Γ/cm^3	$[n]^* \times 10^8,$ $cm^4 c^2/\Gamma^2$	[η] [*] , дл/г	p*
0,030		240	8000	0,1	65	65	1	0,20	0	0,5	1,0
0,095	0,37	100	1000	0,2	65	65	1	0,07	350	2,0	1,2
0,25	0,35	50	200	0,2	80	80	1	0,02	1400	4,0	1,8
4	0,37	40	10	0,2	70	70	1	0,02	1850	10	2,1
9		100	11	0,1	70	70	1	0,05	6000	12	2,1
10	0,36	50	5	0,2	65	65	1	0,04	6000	12	2,1
13		70	5	0,2	80	80	1	0,03	6000	12	2,1

Таблица 1. ММ ПДМАЭМ, константы скорости реакции k^* и структурно-конформационные характеристики селенсодержащих наноструктур на основе ПДМАЭМ при различных молекулярных массах полимерной матрицы $M_{\rm w}$.

Система	$k^* \times 10^{-3}$,	[η],	$[\eta]^*$,	$M_w \times$	$M^*_{w} \times$	N*	Φ*,	$A_2^* \times 10^4$,	R_g^* ,	R_h^* ,	ρ^*	p*
	c ⁻¹	дл/г	дл/г	10^{-3}	10^{-6}		Γ/cm^3	cm^3 моль/ Γ^2	HM	HM		
ОЭЦ-вода		5,3		150								
ОЭЦ-нано- Se ⁰ -вода ($\nu = 0,1$)	0,4		3,6		480	3200	0,14	0	85	147	0,6	1,4
ОЭЦ-нано- Se ⁰ -вода (v= 0,065)	0,3				30	200	0,01	1,3	85	147	0,6	1,5
МЦ-вода		4,6		130								
МЦ-нано- Se ⁰ -вода (v = 0,1)	0,5		2,8		82	630	0,12	0,1	50	100	0,5	1,45
КМЦ-вода		>20		130								
КМЦ-нано- Se ⁰ -вода (v = 0,1)	0,2		2,7		148	1140	0,04	0,3	87	100	0,9	-

Таблица 2. Константы скорости реакции образования нанокомпозитов к^{*}, молекулярноконформационные характеристики производных целлюлозы и структурно-конформационные характеристики соответствующих селенсодержащих наноструктур.

ν	k*×103, c-1	M _w *×10 ⁻⁶	N*	$A_2^* \times 10^4$, cm^3 моль/ Γ^2	R _g *,	R _h *,	ρ*	p*	Φ*×10 ⁻¹ , _{Γ/cm³}
0	-	0,015	-	-	-	117	-	2,5	-
0,015	•	5,0	33	-0,5	112	205	0,6	-	0,01
0,025	0,3	6,0	40	-0,6	65	173	0,4	-	0,04
0,030	,	5,0	33	-3,0	62	163	0,4	ı	0,04
0,040	,	4,4	29	-1,4	65	144	0,5	ı	0,03
0,050	0,8	-	-	ı	ı	ı	ı	ı	
0,065	-	30	200	1,3	85	147	0,6	1,5	0,1
0,100	3,7	480	3200	0	85	147	0,6	1,4	1,4
0,150	4,0	60	400	1,2	50	136	0,4	1,2	0,9
0,200	5,4	45	300	-5,6	52	168	0,3	1,0	0,7

Таблица 3. Константы скорости реакции k^* и структурно-конформационные характеристики селенсодержащих наноструктур на основе ОЭЦ при различных массовых соотношениях селен:полимер в растворе v.

ν	$k^* \times 10^3$, c^{-1}	M _w *×10 ⁻⁶	N*	$A_2^* \times 10^4$, $cm^3 moль/r^2$	R _g *,	R _h *,	$ ho^*$	p*	Φ^* , Γ/cm^3
0,025	0,5	45	265	4,4	55	52			0,05
0,050	0,5	24	141	0	45	43			0,05
0,100	0,5	90	530	0	70	70	~1	~1,4	0,05
0,150	2,5	47	276	0	60	58			0,04
0,200	1,3	14	82	0,5	40	37			0,04

Таблица 4. Константы скорости реакции k^* и структурно-конформационные характеристики селенсодержащих наноструктур на основе ПДМАЭМ при различных массовых соотношения селен:полимер в растворе v

Обсуждение результатов измерений.

1. Влияние молекулярной массы полимерной матрицы на морфологические характеристики селенсодержащих наноструктур

По данным статического рассеяния света величина молекулярной массы при переходе от системы поликатион-вода к системе поликатион-нано- $\mathrm{Se^0}$ -вода в зависимости от $\mathrm{M_w}$ возрастает в 5 - 8000 раз, т.е. на поверхности нано- $\mathrm{Se^0}$ адсорбировано соответственно $\mathrm{N}=5$ - 8000 молекул полимера (таблица 1).

Второй вириальный коэффициент A_2^* для системы поликатион-нано-Se 0 вода при всех значениях M_w очень мал и составляет $(0,1-0,2)\times 10^4$ см 3 моль/ r^2 , характеризуя термодинамическое состояние раствора как близкое к идеальному. Важно подчеркнуть, что величина A_2^* практически не зависит от молекулярной массы полимера и наноструктуры (таблица 1), а для растворов изолированных макромолекул обычно $A_2 \sim 1/M_w$.

Величины R_g^* и R_h^* для наноструктур во всем исследованном диапазоне M_w практически не зависят от MM полимерной матрицы (рис. 1) и составляют 65 - 80 нм (таблица 1).

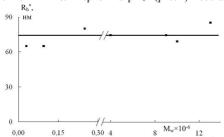


Рис. 1. Зависимость гидродинамических размеров R_h* селенсодержащих наноструктур на основе ПДМАЭМ от ММ полимерной матрицы.

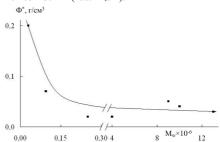


Рис. 2. Зависимость средней плотности селенсодержащих наноструктур на основе ПДМАЭМ Φ^* от ММ полимерной матрицы.

Для всех значений M_w величина среднеквадратичного радиуса инерции R_g^* наноструктуры совпадает с величиной гидродинамического радиуса R_h^* , т. е. $\rho^* = R_g^*/R_h^* = 1$, что свидетельствует о сферической форме образующихся наноструктур.

Расчет средней плотности наноструктур Φ^* по формуле:

$$\Phi^* = 3 M_w^* / 4\pi N_a R_{c\phi}^3, \tag{1}$$

где $R_{c\phi} = 1,29 R_g^*$

показал, что в области относительно коротких полимерных цепей ($M_w < 2.5 \times 10^5$) формируются очень плотные наноструктуры, а для $M_w \ge 2.5 \times 10^5$ плотность наноструктур, хотя значительно превосходит плотность полимерного клубка, но меньше чем для коротких цепей (таблица 1; рис.

2). Уже это позволяет предположить существование двух различных типов морфологии исследованных наноструктур с локализацией в коронарной области: коротких плотно упакованных ($\Phi^* > 0.05 \text{ г/см}^3$) и длинных менее плотно упакованных полимерных цепей ($\Phi^* \le 0.05 \text{ г/см}^3$). Кроме того, обнаружена зависимость величины характеристической вязкости $[\eta]^*$ наноструктур от ММ полимерной матрицы (таблица 1, рис. 4).

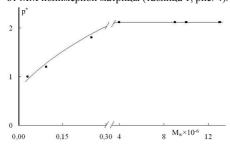


Рис. 3. Зависимость параметра асимметрии формы р*селенсодержащих наноструктур на основе ПДМАЭМ от ММ полимерной матрицы.

Рис. 4. Зависимость характеристической вязкости селенсодержащих наноструктур на основе ПДМАЭМ [η]* от ММ полимерной матрицы.

Обращает на себя внимание тот факт, что данные по $[\eta]^*$ противоречат результатам исследования величин R_g^* и R_h^* . Объяснить это можно тем, что значение $[\eta]^*$ определяется не только гидродинамическими размерами растворенных частиц, но зависит и от степени асимметрии формы частиц p^* .

Величину параметра p^* для исследованных наноструктур можно оценить по значениям характеристической величины ДЛП $[n]^*$ (таблица 1). В приближении $[n]^* \sim [n]_f^*$ (в частности, справедливого для водных растворов ПДМАЭМ) на основании соотношения

$$[n]_f = \left(\frac{n_s^2 + 2}{3}\right)^2 \frac{M_W^* \left(\frac{dn}{dc}\right)^2 f(p)}{30\pi R T n_s} = const M_W^* \left(\frac{dn}{dc}\right)^2 f(p), \tag{2}$$

где р — плотность сухого полимера, f(p) — табулированная функция отношения осей молекулярного эллипсоида, расчет величин параметра p^* показал, что в области MM полимера $M_w < 2.5 \times 10^5$ форма наноструктур близка к сферической $p^* = 1 - 1.2$, а при $M_w \ge 2.5 \times 10^5$ параметр $p^* = 1.8 - 2.1$ (таблица 1; рис. 3). Зависимость $p^*(M_w)$ (рис. 3) коррелирует с зависимостью $[\eta]^*(M_w)$ (рис. 4).

Однако наблюдается существенное различие в поведении конформационных параметров p^* и ρ^* (таблица 1): по данным светорассеяния, форма наноструктур близка к сферической во всем исследованном интервале ММ, а динамооптические и вискозиметрические эксперименты обнаружили изменение формы от сферической с $p^*=1$ до вытянутой с $p^*\approx 2$. Поскольку изменение формы наноструктур, образованных длинными относительно неплотно упакованными полимерными цепями, наблюдается только при использовании градиентных методов (вискозиметрия и сосбенно, ДЛП), можно предположить, что такие наноструктуры деформируются в потоке раствора. В то же время наноструктуры, образованные короткими полимерными цепями ($M_w < 2.5 \times 10^5$), проявляют устойчивость к воздействию гидродинамического поля. Такое поведение согласуется с данными по их средней плотности Φ^* и с предположением об изменении морфологии наноструктур при вариации ММ полимерной матрицы.

2. Изучение процессов формирования и морфологических характеристик селенсодержащих наноструктур на основе жесткоцепных молекул производных целлюлозы.

При восстановлении селенистой кислоты аскорбиновой кислотой константа скорости первого порядка по селенистой кислоте составила $k^*=1,6\times 10^{-3}~c^{-1}$, а в присутствии полимерного стабилизатора она снизилась до $k^*=0,4\times 10^{-3}~c^{-1}$ (ОЭЦ, v=0,1), $k^*=0,3\times 10^{-3}~c^{-1}$ (ОЭЦ, v=0,065), $k^*=0,5\times 10^{-3}~c^{-1}$ (МЦ) и $k^*=0,2\times 10^{-3}~c^{-1}$ (КМЦ) (таблица 2). Без полимерного стабилизатора наночастицы селена оказались аггрегативно неустойчивыми и через 3-4 суток образовывали конгломераты, которые выпадали в осадок. В случае полимер-стабилизированных частиц нано-а-Se⁰ их агрегативная устойчивость сохранялась не менее 2 месяцев.

Независимую информацию о состоянии растворов дают данные по статическому светорассеянию. Второй вириальный коэффицент A_2^* для всех исследованных систем полимер – нано-а-Se⁰ – вода при v=0,1 очень мал и составляет $(0-0,3)\times 10^{-4}$ см³моль/г² (таблица 2), характеризуя термодинамическое состояние растворов как близкое к идеальному. При соотношении полимер:селен v=0,065 раствор наноструктур на основе ОЭЦ является хорошим: $A_2^*=1,3\times 10^{-4}$ см³моль/г² (таблица 2). То есть, наночастицы селена в отношении полимера работают как осадитель – при увеличении концентрации селена в водном растворе полимера термодинамическое состояние системы ухудшается, приближаясь в условиях полного насыщения адсорбционной емкости наночастиц (v=0,1) к идеальному состоянию. Таким образом, в системах производные целлюлозы-нано-а-Se⁰-вода образуются агрегативно устойчивые адсорбаты макромолекул полимера на наночастицах селена.

Изучение вязкости водных растворов исходных полимеров и сформировавшихся наноструктур показало, что при переходе от системы полимер-вода к системе полимер-нано-а- Se^0 -вода величина характеристической вязкости ($[\eta]$ и $[\eta]^*$) во всех рассматриваемых случаях уменьшается (таблица 2).

Однако при этом, по данным статического рассеяния, величина MM возрастает в 200-3200 раз, т. е. на поверхности наночастицы селена адсорбировано $N^* = 200-3200$ молекул полимера (таблица 2). Учитывая последнее, можно заключить, что наблюдаемое уменьшение характеристической вязкости обусловлено изменением плотности и формы растворенных объектов.

Этот вывод подтверждается прямыми измерениями размеров частиц методами светорассеяния. Как видно из таблицы 2, величины R_g^* и R_h^* для наноструктур в области v=0,065-0,1 не зависят от содержания селена в растворе и составляют соответственно 50-87 нм и 100-147 нм. При этом конформационно-структурный параметр $\rho^*=R_g^*/R_h^*$ для КМЦ приближается к 1 ($\rho^*=0,9$). Это свидетельствует о сферической форме образующихся наноструктур. Для наноструктур на основе ОЭЦ (v=0,065 и 0,1) и МЦ ситуация сильно отличается: величины параметра ρ^* аномальи малы и составляют соответственно $\rho^*=0,6$ и 0,5. Такие значения ρ^* , вероятно, обусловлены сильным уменьшением плотности наноструктуры от центра к периферии.

Расчет средней плотности Φ^* по формуле (1) показал, что во всех случаях формируются наноструктуры, плотность (таблица 2) которых значительно (на два-три порядка) превосходит соответствующую характеристику для полимерного клубка. Причем, для «аномальных» наноструктур (с низкими значениями параметра $\rho^* = 0,5 - 0,6$) на основе ОЭЦ ($\nu = 0,1$) и МЦ средние плотности близки и существенно превосходят величину Φ^* для «классической» наноструктуры на основе КМЦ ($\rho^* \sim 1$). Кроме того, на примере системы ОЭЦ – нано-а-Se 0 – вода видно, что величина Φ^* существенно возрастает с увеличением содержания селена в растворе.

Информацию о форме и структуре «аномальных» систем (ОЭЦ-нано-а-Se 0 и МЦ-нано-а-Se 0 в воде) можно получить, анализируя данные по ДЛП. В приближении $[n] \approx [n]_f$ расчет параметра формы p^* показал, что конформация наноструктур сильно отличается от гауссова клубка: $p^* = 1,4$ (для ОЭЦ при v = 0,1), 1,5 (для ОЭЦ при v = 0,065) и 1,45 (для МЦ). Отметим, что в водных средах макромолекулы использованных производных целлюлозы имеют конформацию гауссова клубка ($p \sim 2-2,5$). С другой стороны, полученные значения p^* несколько превышают величины p^* для сферы. Вероятно, во-первых, следует принимать во внимание повышенную равновесную жесткость макромолекул ОЭЦ (величина сегмента Куна A = 15 нм) и МЦ (A = 30 нм); если учесть вклад полной сегментной анизотропии $[n]_6 + [n]_6$, то фактическая величина параметра p^*

окажется заметно меньше и еще ближе к 1. Во-вторых, в явлении ДЛП может иметь место деформация крупных частиц в градиенте потока, при этом она тем ярче выражена, чем больше ММ растворенных объектов и чем ниже их плотность. Таким образом, все рассмотренные наноструктуры имеют или сферическую форму, или их форма очень слабо отличается от таковой.

3. Исследование процесса самоорганизации и зависимости морфологических характеристик селенсодержащих наноструктур на основе оксиэтилцеллюлозы от массового соотношения селен:полимер в растворе.

Результаты измерений статического светорассеяния указывают на то, что во всех системах образовались селен-содержащие наноструктуры ОЭЦ. Молекулярная масса растворенных частиц после восстановления составила от 4,4 до 480 миллионов, что соответствует адсорбции на одной наночастице от 30 до 3200 молекул ОЭЦ в зависимости от v. Максимальное значение молекулярной массы наноструктур, и, соответственно, максимальное значение числа адсорбированных на наночастице макромолекул, достигалось при v = 0,1 (рис. 7, кривая 2 и рис. 8, кривая 2, таблица 3). Это может служить подтверждением высказанного ранее предположения о том, что данное массовое соотношение селен:полимер соответствует насыщению адсорбционной емкости наночастиц аморфного селена.

Данные статического светорассеяния позволяют также судить о термодинамическом состоянии растворов наноструктур по величине второго вириального коэффициента A_2^* . Оказалось, что его величина очень сильно изменяется при переходе от одного значения v к другому. Следует отметить тот факт, что при v=0,1 значение $A_2^*=0$ (что является точкой локального минимума на зависимости второго вириального коэффициента A_2^* от массового соотношения селен:полимер в растворе v) — это характеризует раствор наноструктур как идеальный (рис. 11 кривая 2, таблица 3).

Как видно из таблицы 3, при низких значениях ν гидродинамический радиус R_h^* (рис. 10, кривая 2) и среднеквадратичный радиус инерции R_g^* (рис. 9, кривая 2) наноструктур максимальны, повторно максимум на зависимости $R_g^*(\nu)$ достигается при $\nu=0.065-0.1$, и после этого размеры наноструктур вновь убывают.

Представление о форме наноструктур можно получить, сопоставляя значения величин R_g^* и R_h^* . Структурно-конформационный параметр $\rho^* = R_g^*/R_h^*$ также достигает своего максимального значения $\rho^* = 0,6$ при $\nu = 0,065-0,1$, и это значение с определенным допущением можно считать соответствующим форме, близкой к сферической (рис. 5).

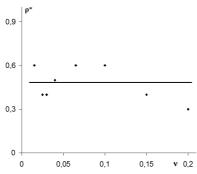


Рис. 5. Зависимость конформационно-структурного параметра наноструктур ρ^* от массового соотношения селен : полимер в растворе ν для систем ОЭЦ-нано-Se⁰-вода.

Во всем же диапазоне 0.015 < v < 0.065 и v > 0.1 значения структурно-конформационного параметра ρ^* являются аномально низкими, характерными для структур, у которых практически вся масса сосредоточена в центре.

Интересно сопоставить полученные данные с результатами расчета значений средней плотности наноструктур Φ^* по формуле (1). Уже это позволяет предположить существование двух различных типов морфологии исследованных наноструктур с локализацией в коронарной области: коротких плотно упакованных ($\Phi^* > 0.05 \text{ г/см}^3$) и длинных менее плотно упакованных полимерных цепей ($\Phi^* \le 0.05 \text{ г/сm}^3$).

Кроме того, обнаружена зависимость величины характеристической вязкости [η]* наноструктур от ММ полимерной матрицы (таблица 1).. Согласно полученным данным, во всех случаях формируются наноструктуры, плотность которых значительно (на один − три порядка) превосходит соответствующую характеристику для полимерного клубка (таблица 3, рис. 12, кривая 2).

Получается, что максимальная плотность достигается при v = 0,1, а затем, с ростом v, опять убывает, что может служить косвенным доказательством того, что данное массовое соотношение селен:полимер соответствует насыщению адсорбционной емкости наночастиц аморфного селена.

Непосредственную информацию о форме наноструктур можно получить, анализируя данные по ДЛП. В приближении $[n] \approx [n]_f$ расчет параметра формы p^* показал, что конформация наноструктур сильно отличается от гауссова клубка: $p^* = 1-1,5$ (таблица 3). Отметим, что в водных средах макромолекулы ОЭЦ имеют конформацию гауссова клубка, что было подтверждено и нашими измерениями ($p_{\rm OЭЦ} = 2,5$, см. таблицу 3). С учетом повышенной равновесной жесткости макромолекул ОЭЦ (величина сегмента Куна A = 30 нм), фактическая величина параметра p^* окажется заметно меньше и еще ближе к 1. Таким образом, согласно данным по ДЛП, все рассмотренные наноструктуры имеют или сферическую форму, или их форма очень слабо отличается от таковой.

4. Морфологические характеристики селенсодержащих наноструктур на основе жесткоцепных молекул при неизменном массовом соотношении селен:полимер в растворе.

Было проведено сравнение структурно-конформационных характеристик селенсодержащих наноструктур на основе полимеров различной природы, при близких значениях молекулярной массы основы и одинаковых значениях массового соотношения селен:полимер в растворе. Для этого были сопоставлены и проанализированы результаты, полученные для полиэлектролита катионной природы (ПДМАЭМ с $M_w = 170 \times 10^3$), полиэлектролита анионной природы (КМЦ с $M_w = 130 \times 10^3$), и неионогенного полимера (ОЭЦ с $M_w = 150 \times 10^3$) (см. таблицы 1 - 3). Все эти полимеры относятся к типичным жесткоцепным полимерам.

Для удобства сопоставления, все результаты собраны в одну таблицу 5. Как видно из данных, приведенных в ней, во всех случаях имеет место эффект адсорбции значительного числа N^* макромолекул полимера на наночастицах аморфного селена с формированием сверхвысокомолекулярных наноструктур. Наноструктуры с наибольшей молекулярной массой M_w^* и наибольшим количеством входящих в их состав макромолекул N^* , были получены с использованием в качестве полимерной матрицы ОЭЦ. При этом, среднеквадратичный радиус инерции наноструктур практически не зависел от типа полимерного стабилизатора ($R_g^* \approx 70-87$ нм), а это, в частности, обусловливает значительные различия в средней плотности наноструктур, рассчитываемой по формуле (1) (таблица 5).

۲,	spinific (1) (racinida 6).									
	Полимерная	$M_{\rm w} \times 10^{-3}$	$M_{w}^{*} \times 10^{-6}$	N*	$A_2^* \times 10^4$,	R _g *, нм	R_h^* ,	ρ^*	p*	Φ^* ,
	матрица				cm^3 моль/ Γ^2		HM			Γ/cm^3
	ДЕО	150	480	3200	0	85	147	0,6	1,4	0,14
	КМЦ	130	148	1140	0,3	87	100	0,9	-	0,04
	ПДМАЭМ	170	90	530	0	70	70	1	1,4	0,05

Таблица 5: Структурно-конформационные параметры нанокомпозитов ОЭЦ-нано-Se 0 , КМЦ-нано-Se 0 и ПДМАЭМ-нано-Se 0 при фиксированном массовом соотношении селен:полимер в растворе $\nu=0,1$.

Как видно из таблицы 5, во всех описываемых случаях значение второго вириального коэффициента $A^*_{\ 2} \to 0$, что позволяет охарактеризовать термодинамическое состояние всех растворов как идеальное.

Сопоставление значений величин среднеквадратичного радиуса инерции R_g^* и гидродинамического радиуса R_h^* (таблица 5) показывает, что при сопоставимых значениях R_g^* , для всех систем наблюдается значительное различие в значениях R_h^* . Таким образом, соотношение $\rho^* = R_g^*/R_h^*$ для наноструктур, оказывается, в значительное мере определяется природой полимерной матрицы. Данный параметр, с одной стороны, позволяет оценить форму наноструктур, а с другой – качественно оценить их однородность, то есть распределение плотности. Если для КМЦ и ПДМАЭМ значение этого структурно-конформационного параметра близко к 1 (что позволяет охарактеризовать форму наноструктур как сферическую, а распределение плотности – как равномерное), то в случае ОЭЦ его значение, равное 0,6, указывает на то, что большая часть массы сосредоточена в центре наноструктуры.

Анализ данных по ДЛП и расчет параметра асимметрии формы p^* в приближении $[n] \approx [n]_f$ для наноструктур на основе ОЭЦ и ПДМАЭМ показал, что конформация изученных наноструктур сильно отличается от гауссова клубка (для которого оно должно составлять $p^* = 2,5$): $p^* = 1,4$, и приближается к сферической ($p^* = 1$). С учетом повышенной равновесной жесткости макромолекул ОЭЦ и ПДМАЭМ, фактическая величина параметра p^* окажется еще ближе к 1. Таким образом, согласно данным по ДЛП, наноструктуры на основе этих полимеров имеют форму, близкую к сферической.

5. Самоорганизация и морфологические характеристики селенсодержащих наноструктур на основе жесткоцепных полимеров при различных значениях массового соотношения селен:полимер в растворе

По результатам изучения кинетики восстановления в системе полимер-нано- Se^0 -вода было показано, что с ростом v до 0,2 значение константы скорости реакции также растет для наноструктур на основе ОЭЦ (рис. 10, таблица 3). В случае наноструктур на основе ПДМАЭМ характер зависимости несколько иной (рис. 6, таблица 4): до $\mathrm{v}=0,1$ значение k^* остается постоянным ($\mathrm{k}^*=0,5$), затем оно резко возрастает до $\mathrm{k}^*=2,5$ при $\mathrm{v}=0,15$, после чего вновь начинает снижаться.

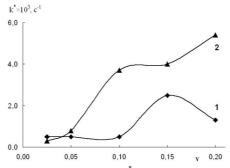
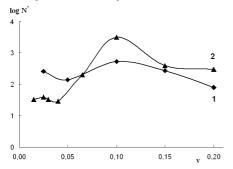



Рис. 6. Зависимость константы скорости реакции ${\bf k}^*$ от массового соотношения селен:полимер в растворе ${\bf v}$ для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

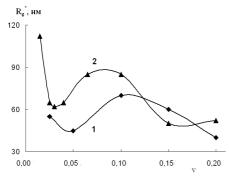
На основании результатов измерений статического светорассеяния можно сделать вывод о том, что во всех случаях имеет место эффект адсорбции значительного числа N^* макромолекул полимера на наночастицах аморфного селена с формированием сверхвысокомолекулярных наноструктур. Наноструктуры с наибольшей молекулярной массой M_w^* и наибольшим количеством входящих в их состав макромолекул N^* , были получены с использованием в качестве полимерной матрицы ОЭЦ (таблицы 3 и 4, рис. 7 и 8). Следует отметить, что максимальные значения

молекулярной массы и числа полимерных макромолекул в составе наноструктуры для обоих полимеров достигается при $\nu = 0,1.$

Log M_w

9

7


1

0,00 0,05 0,10 0,15 v 0,20

Рис. 7. Зависимость логарифма числа молекул полимера N*, входящих в состав наноструктуры, от массового соотношения селен:полимер в растворе v для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

Рис. 8. Зависимость логарифма молекулярной массы наноструктуры М* от массового соотношения селен:полимер в растворе v для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

На рис. 9 представлены графики зависимости среднеквадратичных радиусов инерции наноструктур от ν . И в этом случае следует отметить, что для обоих типов полимеров значение $\nu=0,1$ является точкой максимума.

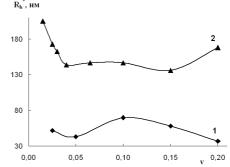
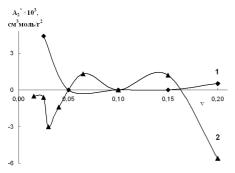



Рис. 9. Зависимость среднеквадратичных радиусов наноструктур от массового соотношения селен:полимер в растворе v для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

Рис. 10. Зависимость гидродинамических радиусов наноструктур от массового соотношения селен:полимер в растворе v для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

Метод статического светорассеяния также позволяет судить о термодинамическом состоянии растворов наноструктур по значению второго вириального коэффициента A_2^* . В случае ПДМА-ЭМ $A_2^* \to 0$ во всех рассмотренных случаях, кроме самой низкой из изученных концентраций селена в растворе (таблица 4, рис. 11), что позволяет охарактеризовать термодинамическое состояние всех растворов как идеальное. В случае ОЭЦ, зависимость A_2^* (v) имеет значительно более сложный характер, но и для растворов этих наноструктур справедливо утверждение о том, что при v = 0,1 их состояние является идеальным (таблица 3, рис. 11).

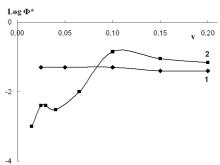


Рис. 11. Зависимость второго вириального коэффициента растворов наноструктур от массового соотношения селен:полимер в растворе v для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

Рис. 12. Зависимость логарифма средней плотности наноструктур от массового соотношения селен:полимер в растворе v для наноструктур на основе ПДМАЭМ (1) и ОЭЦ (2).

Методом динамического светорассеяния были получены данные о гидродинамических размерах наноструктур R_h^* (таблицы 3 и 4, рис. 10)

Сопоставление значений величин R_g^* и R_h^* позволяет получить информацию о форме и морфологии наноструктур, исходя из значений параметра $\rho^* = R_g^*/R_h^*$. Исходя из полученных значений этого параметра, форма наноструктур ПДМАЭМ является сферической ($\rho^* = 1$), в случае же ОЭЦ значения ρ^* оказываются аномально низкими, что позволяет утверждать о неравномерности распределения массы внутри наноструктуры, и о том, что ее центральная часть значительно превосходит по плотности периферийную.

По результатам статического светорассеяния, можно рассчитать значения средней плотности наноструктур по формуле (1) (таблицы 3 и 4, рис. 12). В случае ПДМАЭМ, плотность наноструктур не зависит от ν , в случае же ОЭЦ, максимальное значение средней плотности достигается при $\nu=0,1$.

Непосредственную информацию о форме наноструктур можно получить, анализируя данные по ДЛП. В приближении $[n] \approx [n]_f$ расчет параметра асимметрии формы p^* показал, что конформация изученных наноструктур сильно отличается от гауссова клубка (для которого $p^* = 2,5$): $p^* = 1,4$ для наноструктур на основе ПДМАЭМ, и $p^* = 1 - 1,5$ для наноструктур на основе ОЭЦ. С учетом повышенной равновесной жесткости макромолекул ОЭЦ и ПДМАЭМ, фактическая величина параметра p^* окажется еще ближе к 1. Таким образом, согласно данным по ДЛП, наноструктуры на основе этих полимеров имеют форму, близкую к сферической.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- Для всех исследованных систем установлен факт адсорбции значительного числа макромолекул на наночастицах селена с формированием сверхвысокомолекулярных плотноупакованных наноструктур с формой близкой к сферической.
- Установлена направленность корреляции между величиной ММ полимера и средней плотностью наноструктуры, при этом более плотно упакованные наноструктуры обладают устойчивостью к воздействию гидродинамического поля.
- 3. В системе с ионогенным полимерным стабилизатором зависимость константы скорости реакции k* (v) имеет экстремальный вид, в то время как в системе с неионогенной полимерной матрицей наблюдается непрерывный рост величины k* с ростом v. По-видимому, это может быть обусловлено различным характером стабилизации наночастиц селена: стерической (в случае ОЭЦ) и электростерической (в случае ПДМАЭМ).

- Обнаружено, что жесткоцепные макромолекулы производных целлюлозы на наночастицах селена могут сформировать различные типы наноструктур с локализацией полимерной фазы в коронарной области с различающейся плотностью: наноструктуры на основе ОЭЦ и МЦ существенно более плотные, чем на основе КМЦ.
- 5. Установлено, что точка v=0,1 является «особой», так как она соответствует точке экстремума на зависимостях структурно-конформационных параметров от массового соотношения селен:полимер в растворе. Показано, что комплекс полимерный стабилизатор наночастица селена, полученный в условиях v=0,1, находится вблизи границы его термодинамической устойчивости ($A_2^*=0$). Существенные различия в молекулярной массе, средней плотности, а также в значениях структурно конформационного параметра ρ^* указывают на различную упаковку макромолекул в изученных наноструктурах при v=0,1.

Основное содержание диссертации изложено в следующих работах:

- Svetlana Valueva, Albert Kipper, Victor Kopeikin, Ludmila Borovikova, Denis Ivanov, and Alexander Filippov. Влияние молекулярной массы полимера на размеры и форму селенсодержащих наночастиц // Abstracts 40th International Symposium on Macromolecules "World Polymer Congress MACRO 2004". Paris, France, 2004. P 2. 2 42.
- Valueva S., Kipper A., Kopeikin V., Borovikova L., Ivanov D., Filippov A. Влияние молекулярной массы полимера на свойства селенсодержащих наночастиц // Abstracts of International Conference Dedicated to 50th Anniversary of A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences "Modern Trends in Organoelement and Polymer Chemistry" Moscow, Russia, 2004. P. 20.
- 3. С.В. Валуева, А.И. Киппер, В.В. Копейкин, Л.Н.Боровикова, Д.А.Иванов, А.П.Филиппов/ Влияние молекулярной массы полимерной матрицы на морфологические характеристики селенсодержащих наноструктур и на их устойчивость к воздействию гидродинамического поля // Высокомолек. соед. 2005. Т. 47 А. № 3. С. 438 443.
- Иванов Д.А., Валуева С.В., Киппер А.И., Филиппов А.П. Исследование свойств селенсодержащих наночастиц на основе производных целлюлозы // Тезисы докл. Санкт-Петербургской конференции молодых ученых "Современные проблемы науки о полимерах". – С.-Петербург, 2005.- С. 45.
- Svetlana Valueva, Denis Ivanov, Victor Kopeikin, Ludmila Borovikova, Albert Kipper, Alexander Filippov. Исследование морфологических характеристик селенсодержащих наноструктур производных целлюлозы // Abstracts of 5th International Symposium "Molecular Mobility and Order in Polymer Systems". – S.-Petersburg, Russia, 2005. – P- 209.
- 6. Иванов Д.А., Валуева С.В., Копейкин В.В. Изучение процессов формирования и морфологических характеристик селен-содержащих наноструктур на основе жесткоцепных молекул производных целлюлозы // Тезисы докл. на «Малом полимерном конгрессе». Москва, Россия, 2005. С. 92.
- 7. Иванов Д.А., Валуева С.В., Филиппов А.П., Копейкин В.В. Влияние молекулярной массы полимера на свойства селен-содержащих наноструктур // Тезисы II Санкт-Петербургской конференции молодых ученых « Современные проблемы науки о полимерах», часть 1. Санкт-Петербург, 2006. С. 66.
- 8. Валуева С.В., Киппер А.И., Копейкин В.В., Боровикова Л.Н., Лаврентьев В.К., Иванов Д.А., Филиппов А.П. Изучение процессов формирования и морфологических характеристик селенсодержащих наноструктур на основе жесткоцепных молекул производных целлюлозы // Высокомолек. соед. 2006. Т.48 А. № 8. С. 1403-1409.
- 9. Valueva S.V., Ivanov D.A., Ershov D.Y. Влияние массового соотношения селен:полимер на морфологические характеристики селенсодержащих наноструктур на основе оксиэтилцеллюлозы // Abstracts of the European Ceramic Society «Geometry, Information and Theoretical Crystallography of the Nanoworld», Saint-Petersburg, 2007, P. 64-65.
- Новоселов Н.П., Иванов Д.А., Валуева С.В., Боровикова Л.Н. Процесс самоорганизации и зависимость морфологических характеристик селенсодержащих наноструктур на основе ок-

- сиэтилцеллюлозы от массового соотношения селен : полимер в растворе// Xимич. волокна. 2008, N24, C.42-46.
- 11. Иванов Д.А., Валуева С.В. Влияние природы полимерной матрицы на морфологические характеристики селенсодержащих наноструктур на основе жесткоцепных полимеров // Материалы Международной научной конференции «Современные тенденции развития химии и технологии полимерных материалов» 24-26 ноября 2008, СПб, Санкт-Петербургский государственный университет технологии и дизайна, С.12.
- 12. Иванов Д.А., Валуева С.В., Новоселов Н.П. Морфологические характеристики селенсодержащих наноструктур на основе жесткоцепных молекул // Материалы Международной научной конференции «Современные тенденции развития химии и технологии полимерных материалов» 24-26 ноября 2008, СПб, Санкт-Петербургский государственный университет технологии и дизайна. С.13.
- 13. Д.А. Иванов, С.В. Валуева, Л.Н. Боровикова, Н.П. Новоселов Самоорганизация и морфологические характеристики селенсодержащих наноструктур на основе жесткоцепных полимеров// ЖПХ, 2010, Т. 83, № 2, С. 298 302.
- Д.А. Иванов, С.В. Валуева, Н.П. Новоселов Морфологические характеристики селенсодержащих наноструктур на основе жесткоцепных молекул// Журн. физ. химии, 2010, Т.84, №6, С. 1117-1120.