Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ
Первый проректор, проректор по УР
А.Е. Рудин

Рабочая программа дисциплины

ФТД.01 Ма

Математическое моделирование технических объектов и систем управления

Учебный план: 2025-2026 10.04.01 ИИТА ПСЗИнП ОО №2-1-159.plx

Кафедра: 20 Интеллектуальных систем и защиты информации

Направление подготовки:

(специальность) 10.04.01 Информационная безопасность

Профиль подготовки: Проекти (специализация)

Проектирование систем защиты информации на предприятии

(опециализации)

Уровень образования: магистратура

Форма обучения: очная

План учебного процесса

Семе	Контактная работа Семестр обучающихся		Сам.	Контроль,	Трудоё	Форма	
(курс для		Лекции	Практ. занятия	работа час.		мкость, ЗЕТ	промежуточной аттестации
	УП	17	17	37,75	0,25	2	2aua z
2	РПД	17	17	37,75	0,25	2	Зачет
Итого	УΠ	17	17	37,75	0,25	2	
ИПОГО	РПД	17	17	37,75	0,25	2	

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным

стандартом высшего образования по направлению подготовки 10.04.01 Информационная безопасность,

утверждённым приказом Минобрнауки России от 26.11.2020 г. № 1455

Методический отдел:

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: формирование у обучающихся компетенций в области математического моделирования технических объектов и систем управления; развитие логического и алгоритмического мышления, формирование навыков применения математических методов для решения прикладных задач

1.2 Задачи дисциплины:

- обучить математическому моделированию с помощью системного анализа, теории вероятностей, линейного программирования, криптографии;
- научить применению методики моделирования и исследования технических объектов и систем управления для решения прикладных задач;
- сформирование умений и навыков применять математические методы и модели при описании, анализе и решении практических задач.

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Специальные главы математики

Современные технические средства охраны объектов

Организация и управление исследованиями

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ПК-4: Способен разрабатывать проектные решения по защите информации в автоматизированных системах

Знать: критерии оценки эффективности и надежности средств защиты информации программного обеспечения автоматизированных систем; стоимость программно-аппаратного комплекса защиты информации

Уметь: осуществлять разработку модели угроз безопасности информации и модели нарушителя в автоматизированных системах

Владеть: навыками организации и структурирования систем защиты информации программного обеспечения при подготовки проекта, а также расчет их экономической эффективности

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Наимоноронию и соперучанию разполор		Контактн работа	ная		Ишерен	Форма
Наименование и содержание разделов, тем и учебных занятий	Семестр (курс для 3AO)	Лек. (часы)	Пр. (часы)	СР (часы)	Инновац. формы занятий	Форма текущего контроля
Раздел 1. Введение в моделирование объектов и систем						
Тема 1. Роль моделирования при решении научных и производственных задач. Физическое и математическое моделирование. Классификация видов моделирования систем Практическое занятие: Обзор математических пакетов прикладных программ. Подходы к моделированию систем. Типовые схемы моделирования	2	2	2	4	ИЛ	0
Тема 2. Термины и определения в математическом моделировании. Построение концептуальных моделей. Системы и их Формализация. Практическое занятие: Получение и интерпретация результатов моделирования систем. Понятия линейной и нелинейной системы. Методы решения систем.		2	2	4		

Тема 3. Способы реализации математических моделей систем и процессов. Метод Гаусса. Нормы векторов и матриц. Практическое занятие: Итерационные методы решения систем линейных алгебраических уравнений. Тема 4. Формальная модель объекта. Типовые математические схемы.		2	2	4		
Практическое занятие: Непрерывнодетерминированные модели (D-схемы). Дискретнодетерминированные модели (F-схемы). Дискретностохастические модели (P-схемы).		3	2	4		
Раздел 2. Моделирование систем						
Тема 5. Моделирование систем с использованием математических схем. Моделирование цифровых электронных схем. Практическое занятие: Знакомство с пакетом Simulink. Моделирование электротехнических устройств в Matlab, SimPower Systems и Simulink.		2	3	4,75	ил	0
Тема 6. Математические модели решения дифференциальных уравнений, интегралов, специальных функций, интегрирование функций. Практическое занятие: Инструментальные средства моделирования систем. Языки имитационного моделирования.		2	2	4		
Тема 7. Имитационное моделирование. Представления времени в модели. Моделирование параллельных процессов. Практическое занятие: Матрицы. Изучение способов создания матриц и выполнения основных матричных операций. Определение основных числовых характеристик матриц.		2	2	6		
Тема 8. Понятие статистического эксперимента. Статистическое моделирование систем на ЭВМ. Обработка и анализ результатов моделирования. Практическое занятие: Псевдослучайные последовательности и процедуры их машинной генерации в формировании случайных факторов.		2	2	7		
Итого в семестре (на курсе для ЗАО)	1	17	17	37,75		
Консультации и промежуточная аттестация (Зачет)		0,2	25			
Всего контактная работа и СР по дисциплине		34,	25	37,75		

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
ПК-4	Формулирует критерии надежности информационной системы предприятия влияющие на ее моделирование, проектирование и внедрение. Может создавать математические модели распределения потоков информации на предприятии, для оценки и проектирования систем информационной безопасности. Использует имитационное моделирование для обоснования рентабельности вложений в систему информационной безопасности предприятия	Вопросы для устного собеседования и практико - ориентированные задания

5.1.2 Система и критерии оценивания

Школо ополивания	Критерии оценивания сформированности компетенций				
Шкала оценивания	Устное собеседование	Письменная работа			
Зачтено	студент дал полные, развернутые ответы на все основные теоретические вопросы, продемонстрировал знание терминологии, основных элементов, умение применять теоретические знания. Студент без затруднений ответил на все дополнительные вопросы.	не предусмотрено			
Не зачтено	обучающийся не может изложить значительной части программного материала, допускает существенные ошибки, допускает неточности в формулировках и доказательствах, нарушения в последовательности изложения программного материала.	не предусмотрено			

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности

5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов				
	Семестр 2				
1	Моделирование как метод исследования				
2	Правила и этапы моделирования				
3	Понятие модели				
4	Классификация моделей				
5	Классификация математических моделей				
6	Общие требования и рекомендации по математическому моделированию				
7	Этапы построения и применения математических моделей				
8	Системный подход				
9	Понятие системы				
10	Принципы системного подхода				
11	Классификация систем				
12	Технические системы				
13	Технический объект				
14	Жизненный цикл технического объекта				
15	Техническая система				
16	Признаки технических систем				
17	Взаимосвязь техники и технологии				
18	Проектирование технических систем				
19	Методология проектирования				

	Pacchotholino toxunium in toxuniuocium offi outor o floridum
20	Рассмотрение техники и технических объектов с позиций системного подхода
21	Структура и параметры объектов проектирования
22	Стадии, аспекты и режимы процесса проектирования
23	Постановка задач проектирования
24	Особенности технологии автоматизированного проектирования технического объекта
25	Две основные задачи динамики точки
26	Дифференциальные уравнения движения материальной точки
27	Динамика механической системы
28	Действительные и возможные перемещения, число степеней свободы, идеальные связи
29	Теорема о движении центра масс механической системы
30	Случай замкнутой механической системы
31	Дифференциальные принципы теоретической механики
32	Примеры несвободных систем
33	Принцип виртуальных перемещений
34	Применение принципа виртуальных перемещений
35	Уравнения Лагранжа в независимых координатах
36	Введение в теорию размерности величин
37	Основные и производные единицы измерения
38	Формула размерности
39	Структура функциональных связей между физическими величинами
40	Параметры, определяющие класс явлений
41	Регрессионный анализ
42	Основные этапы анализа адекватности модели и реализации технологической цепочки вычислительного эксперимента, пример конкретной моделей объекта
43	понятие, особенности постановки и основные подходы к решению прямых и обратных задач, корректность
44	Численные методы решения задачи Коши для ОДУ и их систем, представление о жесткости дифференциальных уравнений и об особенностях их численного решения
45	Особенности постановки начальных задач для дифференциальных уравнений с запаздывающим аргументом и численные методы их решения
46	Начально-краевые задачи для дифференциальных уравнений в частных производных параболического типа и основные методы их решения
47	Понятие моделей состава и структуры объекта, примеры
48	Основные понятия теории систем, классификация и свойства систем
49	Понятие подобия и размерности, пример анализа размерности
50	Основные кинетические зависимости, привлекаемые для построения математических моделей технических объектов
51	Технология проведения обязательных численных экспериментов
52	Постановка и основные методы решения оптимизационных задач
53	Понятие динамической системы, фазовые траектории и портреты, бифуркации
54	Технология математического моделирования и особенности ее использования в задачах с высоким уровнем неопределенностей
55	Общие черты технологии проведения лабораторного и вычислительного эксперимента

5.2.2 Типовые тестовые задания

не предусмотрено

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

1. При разбиении на информационные кадры при передаче потока информа-ции по каналам связи в компьютерных сетях используется метод вставки начального и заключительного флагов (обрамления кадра). Каждый кадр может содержать произвольное число информационных битов, он начина-ется и заканчивается специальной последовательностью 01111110, называ-емой флагом. Границы между кадрами на приемном конце могут быть од-нозначно распознаны, если в потоке битов внутри кадра не встретится 6 подряд идущих единиц. Для того чтобы произвольный поток двоичной информации можно было передавать таким методом, используется прием, называемый «вставка бита» (bit stuffing).

Построить конечный автомат – декодировщик, выполняющий обрат-ную операцию: убирающий лишние нули после получения и распознавания информационного кадра на приемном конце (например, преобразую-щий поток битов 011111010010111110110 в 0111111001011111110) и распознающий начальный и заключительный флаги.

2. Цель работы: освоить методику моделирования линейной системы в программе MATLAB Simulink методами передаточной функции и прямого аналогового моделирования.

Задание:

1). По исходным данным составить структурную схему системы автоматического управления в MATLAB Simulink с использованием блоков TransferFcn и др. Для моделирования передаточных функций:

выбрать закон регулирования, обеспечивающий астатизм в системе и наилучшее качество регулирования. Регулятор смоделировать с помощью блока PID, включив необходимые составляющие. Выбрать оптимальные настройки регулятора, обеспечивающие минимальное время регулирования при соблюдении ограничения на перерегулирования 20%;

вывести логарифмические частотные характеристики системы, определить запасы устойчивости; провести оценку устойчивости системы по методу Гурвица и Найквиста; вывести переходной процесс. Оценить качество регулирования по прямым показателям.

- 2). Собрать схему рассматриваемой системы в MATLAB Simulink по методу аналогового моделирования. Настроить начальные значения. Вывести график переходного процесса в блоке Scope.
- 3). Вывести на один осциллограф выходы схем, построенных в пункте 1 и 2. Получить кривые переходных процессов. Сделать сравнительный вывод о методах моделирования.
- 5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)
- **5.3.1** Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

5.3.2 Форма проведения промежуточной аттестации по дисциплине						
Устная	+	Письменная	Компьютерное тестиро	вание	Иная	

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

Обучающийся тянет билет, в котором два теоретических вопроса и практическое задание. После этого готовится в течении как минимум 20 минут. Обучающийся в устной форме доводит до преподавателя ответ на вопрос. После ответа на теоретический вопрос обучающийся приступает к решению практического задания, гарантированно на решение задачи времени дается 20 минут, при необходимости отвечает на вопросы преподавателя.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка			
6.1.1 Основная учебная литература							
Нерсесянц, А. А.	Имитационное моделирование инфокоммуникационных сетей и устройств	Москва: Ай Пи Ар Медиа	2022	https://www.iprbooks hop.ru/122222.html			

Губарь, Ю.В.	Введение в математическое моделирование	Москва: Интернет- Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа	2021	http://www.iprbooksh op.ru/101993.html
Ахмадиев, Ф. Г., Гильфанов, Р. М.	Математическое моделирование и методы оптимизации	Москва: Ай Пи Ар Медиа	2022	https://www.iprbooks hop.ru/116448.html
6.1.2 Дополнительна	ая учебная литература			
Пименов В. И.	Имитационное моделирование	Санкт-Петербург: СПбГУПТД	2021	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=202101
Бурьков, Д. В., Волощенко, Ю. П.	Математическое и имитационное моделирование электротехнических и робототехнических систем	Ростов-на-Дону, Таганрог: Издательство Южного федерального университета	2020	http://www.iprbooksh op.ru/107953.html
Анашкина Е. В., Марковец А. В.	Математическое моделирование	Санкт-Петербург: СПбГУПТД	2021	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2021179

6.2 Перечень профессиональных баз данных и информационно-справочных систем

Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/; Библиографическая и реферативная база данных Scopus [Электронный ресурс]. URL: http://www.scopus.com);

Научная электронная библиотека eLIBRARY.RU[Электронный ресурс] URL:https://www.elibrary.ru/

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftOfficeProfessional Microsoft Windows

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение
Компьютерный класс	Мультимедийное оборудование, компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду
Лекционная аудитория	Мультимедийное оборудование, специализированная мебель, доска