Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ
Первый проректор, проректор по УР
А.Е. Рудин

Рабочая программа дисциплины

Б1.В.ДВ.02.01 Порист	Пористые композиционные материалы, получение и свойства					
Учебный план:	 2024-2025 18.04.01 ИПХиЭ ТППиКМ ОО №2-1-96.plx					
Кафедра: 32	32 Наноструктурных волокнистых и композиционных материалов им. А.И.Меоса					
Направление подготовки: (специальность)	18.04.01 Химическая технология					
Профиль подготовки: (специализация)	Технология получения полимерных композиционых и нанокомпозиционных материалов					

Уровень образования: магистратура

Форма обучения: очная

План учебного процесса

Семес	стр	Контактная	работа обу	/чающихся	Сам.	Контроль, час.	Трудоё мкость, ЗЕТ	Форма
(курс для	•	Лекции	Практ. занятия	Лаб. занятия	работа			промежуточной аттестации
3	УП	17	17	34	49	27	4	Экзамен
3	РПД	17	17	34	49	27	4	Экзамен
Итого	УП	17	17	34	49	27	4	
VIIOIO	РПД	17	17	34	49	27	4	

стандартом высшего образования по направлению подготовки 18.04.01 Химическая технология, утверждённым приказом Минобрнауки России от 07.08.2020 г. № 910

Составитель (и): кандидат технических наук, Доцент ______ Виноградова Людмила

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным

	Михайловна	
От кафедры составителя: Заведующий кафедрой наноструктурных волокнистых и композиционных материалов им. а.и.меоса	Асташкина Владимировна	Ольга
От выпускающей кафедры:	Асташкина Владимировна	Ольга
Методический отдел: 		

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать у магистрантов теоретические знания и практические навыки в области создания, основных свойств и областей использования пористых композиционных материалов

1.2 Задачи дисциплины:

- подготовить магистранта к поиску и получению новой информации, необходимой для решения научных и инженерных задач по созданию полимерных пористых композиционных материалов;
- изучить основные особенности методов и технологических процессов получения пористых композиционных материалов;
- изучить в курсе лабораторных и практических работ методы исследования основных свойств пористых композиционных материалов;
- изучить и освоить основные области практического использования пористых композиционных материалов.

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Методы исследования полимерных композиционных и нанокомпозиционных материалов

Модификация поверхности полимерных материалов

Планирование и анализ эксперимента

Технология получения полимерных композиционных и нанокомпозиционных материалов

Теоретические и технологические аспекты получения наноматериалов для медицины и биологии

Физико-химические основы получения полимерных композиционных и нанокомпозиционных материалов

Фазовые превращения в полимерных системах

Физико-химия наноструктурных наполнителей для полимерных композиционных материалов

Процессы массопереноса в системах с участием твердой фазы

Научно-исследовательская работа

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ПК-3: Способен организовывать опытно-конструкторские и внедренческие работы в области технологий полимерных композиционных и нанокомпозиционных материалов

Знать: свойства и методы получения пористых материалов, возможности регулирования их свойств и создания новых функциональных материалов; области применения пористых материалов

Уметь: формулировать научно-техническую проблему в области физико-химической характеристики пористых материалов; понимать принципы и механизмы, определяющие специфические свойства пористых материалов; исследовать и оценивать свойства пористых материалов

Владеть: навыками разработки, получения и изучения характеристик и свойств пористых материалов

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Наименование и содержание разделов, тем и учебных занятий		Контактн	ая работ	a			
		Лек. (часы)	Пр. (часы)	Лаб. (часы)	СР (часы)	Инновац. формы занятий	Форма текущего контроля
Раздел 1. Общие представления о пористых композиционных материалах; способы и принципы классификации, основные свойства							
Тема 1. Определение пористых композиционных материалов. Классификация по типу структуры, размеру и форме пор, матричному составу Лабораторная работа: Введение. Задачи и безопасность проведения лабораторного практикума	3	2		2	3	ил	0

Тема 2. Основные физико-механические свойства пористых композиционных материалов: Упругость, удельная поверхность, пористость и удельный объем пор. Лабораторная работа: Освоение методик определения физикомеханических свойств пористых материалов	2		6	4	ИЛ	
Раздел 2. Общие методы получения						
пористых композиционных материалов Тема 3. Наиболее распространенные методы: осаждение; термическое разложение; гидротермальный синтез; избирательного растворения веществ; выжигания одного из компонентов. Лабораторная работа: Получение пористого композиционного материала и исследование его свойств	3		6	4	ИЛ	0
Тема 4. Метод формования высокопористых огнеупорных компонентов; пористых нанокомпозитов на основе аэрогелей. Метод микрофазного расслоения при полимеризации или поликонденсации; спинодального распада. Практические занятия: Теории и модели для расчета основных характеристик пористой структуры материалов	2	4		5	ИЛ	
Раздел 3. Сорбционно-активные пористые композиционные						
Тема 5. Сорбционно-активные пористые материалы на основе наноразмерных твердых наполнителей; волокнистых компонентов. Практические занятия: Методы активации наполнителей для получения полимерных сорбционно-активных пористых наноматериалов. Лабораторная работа: Исследование процесса набухания сорбционно-активных полимерных материалов	2	2	6	6	ИЛ	Пр
Тема 6. Газонаполненные пористые композиционные материалы Практические занятия: Классификация газонаполненных материалов. Способы получения пенопластов на основе реакционноспособных олигомеров Лабораторная работа: Получение пенотермопластов с помощью низкокипящих жидкостей, с помощью порофоров	2	2	6	5	ИЛ	
Раздел 4. Области применения пористых						
композиционных материалов Тема 7. Анализ информационных источников областей применения пористых композиционных материалов Практические занятия: Классификация научно-технической информации по областям применения пористых композиционных материалов		6		9		Пр

Тема 8. Углероднаполненные электропроводящие пористые композиты; углерод-углеродные композиты (сибониты), используемые в качестве катализаторов; антифирикционные и фрикционные сплавы. Лабораторная работа: Получение углерод- фторполимерных электропроводящих пористых композитов.	2	2		4	5		
Тема 9. Биополимеры – пористые композиционные материалы в медицине для регенерации костных тканей. Экранирующие, радиопоглощающие, теплоизоляционные, строительные пористые композиционные материалы. Практические занятия: Перспективы развития производства пористых композиционных материалов. Новые области применения. Лабораторная работа: Изучение физических свойств компонентов искусственного пористого композиционного субстрата для выращивания растений.	2	2	3	4	8	ил	
Итого в семестре (на курсе для ЗАО)	1	7	17	34	49		
Консультации и промежуточная аттестация (Экзамен)			2,5		24,5		
Всего контактная работа и СР по дисциплине			70,5		73,5		

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
ПК-3	Проводит сравнительный анализ методов синтеза ПКМ, в том	Вопросы для устного собеседования

синтез		
Анализирует	научную литературу в области ПКМ и пористых	
нанокомпозиц	ионных материалов, области их применения.	

5.1.2 Система и критерии оценивания

Шкала ополивания	Критерии оценивания сформированности компетенций						
Шкала оценивания	Устное собеседование	Письменная работа					
5 (отлично)	Полный, исчерпывающий ответ, демонстрирующий глубокое понимание предмета.						
4 (хорошо)	Ответ полный, основанный на проработке всех обязательных источников информации. Ответ стандартный, в целом качественный.						

3 (удовлетворительно)	Ответ воспроизводит в основном только лекционные материалы. Демонстрирует понимание предмета в целом, без углубления в детали.	
2 (неудовлетворительно)	Непонимание заданного вопроса. Неспособность сформулировать хотя бы отдельные концепции дисциплины. Попытка списывания, использования неразрешенных технических устройств или пользования подсказкой другого человека.	

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности

5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов						
	Семестр 3						
1 Пористые биополимеры в медицине (регенерация костных тканей)							
2	2 Ассортимент пористых углеродных материалов						
3	Пористые углеродные материалы типа сибунит, свойства и области применения						
4	Пористые материалы на металлической основе. Области применения						
5	Свойства различных типов вспененных полимерных материалов						
6	Химические и физические газообразователи						
7	Получение газонаполненных композиционных материалов						
8	Общая характеристика и классификация газонаполненных материалов						
9	Области применения сорбционно-активных пористых наноматериалов						
10	Методы активации волокнистых материалов для получения пористых структур						
11	Пористые наноматериалы на основе терморасширенного графита						
12	Получение ПКМ на основе аэрогелей						
13	Формирование структуры ПМ в процессе микрофазового расслоения при полимеризации и поликонденсации (явление спинодального распада)						
14	Получение ПМ методом выжигания						
15	Получение ПМ методом избирательного растворения веществ						
16	Получение ПМ методами термического разложения, гидротермального синтеза						
17	Получение ПМ методом осаждения						
18	Адсорбционные методы измерения основных характеристик пористых композиционных материалов						
19	Основные характеристики пористых композиционных материалов						
20	Классификация пор по размерам						
21	Типы структур пористых материалов (ПМ)						
22	Определение и классификация пористых композиционных материалов (ПКМ)						

5.2.2 Типовые тестовые задания

Не предусмотрены

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

Пример 1 — перечислить категории газонаполненных полимеров по степени вспенивания (или кажущемуся удельному весу).

Пример 2 — описать технологическую схему изготовления углерод-углеродных пористых композитов.

Пример 3 — охарактеризовать свойства композиционных пористых материалов типа «сибунит».

5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)

5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

5.3.2 Форма проведения промежуточной аттестации по дисциплине							
Устная	+	Письменная		Компьютерное тестирование		Иная	

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

Время подготовки на билет — 40 мин. Время устного ответа на билет — до 30 мин.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка
6.1.1 Основная учебн	ая литература			
Парфенова Е. И.	Художественное материаловедение. Керамика	Санкт-Петербург: СПбГУПТД	2021	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=202122
Рудаков, О. Б., Селеменев, В. Ф., Рудакова, Л. В.		Москва: Ай Пи Ар Медиа	2021	http://www.iprbooksh op.ru/108287.html
Евсина, Е. М.	Новые высокоэффективные природные сорбенты для очистки воздуха жилых и производственных помещений	Астрахань: Астраханский государственный архитектурно- строительный университет, ЭБС АСВ	2020	http://www.iprbooksh op.ru/100836.html
6.1.2 Дополнительна	я учебная литература			
Д. А. Петрова, Т. Ю. Анущенко, Н. Ф. Уварова, О. В. Асташкина, А. А. Лысенко	Процессы массопереноса с участием твердой фазы	Санкт-Петербург: СПбГУПТД	2023	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=202345
Асташкина О. В., Лысенко А. А., Дианкина Н. В., Тагандурдыева Н., Кузнецов А. Ю.	Сорбционно-активные наноматериалы	Санкт-Петербург: СПбГУПТД	2019	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2019137
Лысенко В.А.	История и методология химической технологии. Системное проектирование углеродных пористых композитов для топливных элементов водородной энергетики.	Санкт-Петербург: СПбГУПТД	2019	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2019319
Лысенко А. А., Кузнецов А. Ю.	Нано- и микропористые материалы. Терморасширенный графит и графен	СПб.: СПбГУПТД	2015	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2923
Ветошкин, А. Г.	Физические основы и техника процессов сепарации пены	Москва: Инфра-	2016	http://www.iprbooksh op.ru/51738.html
Лысенко В.А.	Новейшие технологии пластических масс и композиционных материалов. Научные основы создания углеродных композиционных материалов	СПб : СПбГУПТЛ	2018	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2018121
Лысенко А. А., Кузнецов А. Ю.	•		2015	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2913
Лысенко А. А., Асташкина О. В., Цыбук И. О., Федорова Ю. Е.	1	СПб.: СПбГУПТД	2017	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2017598

Асташкина	Ο.	В., Нано-микропористые			http://publish.sutd.ru/
Лысенко	A.	А., полимерные материалы			tp_ext_inf_publish.ph
Дианкина	H.	В.,	СПб.: СПбГУПТД	2019	p?id=2019139
Тагандурдыева Н.,		H.,			
Кузнецов А.	Ю.				

6.2 Перечень профессиональных баз данных и информационно-справочных систем

База данных Минэкономразвития РФ «Информационные системы Министерства в сети Интернет» [Электронный ресурс]. URL: http://economy.gov.ru/minec/about/systems/infosystems/

Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/

База данных исследований Центра стратегических разработок [Электронный ресурс]. URL: https://www.csr.ru/issledovaniya/

Реферативная и справочная база данных рецензируемой литературы Scopus [Электронный ресурс]. URL: https://www.scopus.com

Портал для официального опубликования стандартов Федерального агентства по техническому регулированию и метрологии [Электронный ресурс]. URL: http://standard.gost.ru/wps/portal/

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftOfficeProfessional

Microsoft Windows

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лабораторные работы проводятся в лаборатории, оборудованной вытяжными шкафами, весами аналитическими, комплектами посуды и оборудования для проведения лабораторных работ по получению и исследованию свойств пористых композиционных материалов.

	•
Аудитория	Оснащение
Лекционная аудитория	Мультимедийное оборудование, специализированная мебель, доска
Учебная аудитория	Специализированная мебель, доска