Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ
Первый проректор, проректор по
УР
А.Е. Рудин

Рабочая программа дисциплины

Б1.О.06	Физика	
Учебный план:		2024-2025 09.03.02 ВШПМ ИТ в дизайне ОО №1-1-19.plx
Кафедра:	2	Полиграфического оборудования и управления
Направление по (специ	одготовки: іальность)	09.03.02 Информационные системы и технологии
Профиль под (специа	цготовки: лизация)	Информационные технологии в дизайне
Уровень обр	азования:	бакалавриат
Форма обуче	ения:	очная

План учебного процесса

Контактная работа обучающихся		Сам.	Контроль,	Трудоё	Форма			
(курс для	•	Лекции	Практ. занятия	Лаб. занятия	2050-0	час.	мкость, ЗЕТ	промежуточной аттестации
1	УΠ	17	17	17	56,75	0,25	3	Зачет
I	РПД	17	17	17	56,75	0,25	3	Sayer
2	УΠ	17	17	17	30	27	3	Экзамен
	РПД	17	17	17	30	27	3	Экзамен
Итого	УΠ	34	34	34	86,75	27,25	6	
V11010	РПД	34	34	34	86,75	27,25	6	

Составитель (и):

Старший преподаватель

От кафедры составителя:
Заведующий кафедрой полиграфического оборудования и управления

От выпускающей кафедры:
Заведующий кафедрой

От выпускающей кафедры:

Владимировна

Тараненко Елена
Юрьевна

Горина
Владимировна

Елена

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 09.03.02 Информационные системы и технологии,

утверждённым приказом Минобрнауки России от 19.09.2017 г. № 926

Методический отдел:

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать компетенции обучающегося в области фундаментальных законов природы и физических явлений.

1.2 Задачи дисциплины:

Рассмотреть структуру физических знаний и направлений в общей физике.

Раскрыть принципы изучения физических законов и явлений в естественнонаучном познании.

Показать особенности физического подхода к проблемам современной техники и технологии

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Математика

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;

Знать: смысл основных понятий и законов физики, взаимосвязи между ними

Уметь: использовать информацию о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления для решения практических задач.

Владеть: навыками применения научных методов познания, наблюдения физических явлений.

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	O IK	Контактн	ая работ	а			
Наименование и содержание разделов, тем и учебных занятий	Семестр (курс для 3AO)	Лек. (часы)	Пр. (часы)	Лаб. (часы)	СР (часы)	Инновац. формы занятий	Форма текущего контроля
Раздел 1. Физические основы механики							
Тема 1. Кинематика. Системы отсчета, путь и перемещение. Скорость, ускорение. Равнопеременное движение. Движение по окружности. Практическая работа. Системы отсчета, путь, скорость. Равнопеременное движение.		4	3	4	9	ИЛ	
Лабораторные работы. Обработка результатов измерений и анализ погрешностей. Измерение линейных размеров физических тел, определение объема и плотности тел правильной формы.							
Тема 2. Динамика. Силы, принцип суперпозиции сил. Законы Ньютона. Работа и энергия. Законы сохранения в механике и свойства пространства и времени. Работа силы, кинетическая и потенциальная энергия.	1						o
Практическая работа. Законы Ньютона. Работа постоянной и переменной силы. Кинетическая и потенциальная энергия. Законы сохранения и силы. Лабораторные работы. Определение ускорения свободного падения при помощи математического маятника. Определение коэффициента жесткости пружины статическим и динамическим методом.		4	3	6	9		

Раздел 2. Элементы молекулярно- кинетической теории							
Тема 3. Основные положения молекулярно -кинетической теории (МКТ). Масса молекул, количество вещества, число Авогадро. Идеальный газ. Основные газовые законы и уравнение состояния идеального газа. Основное уравнение молекулярно-кинетической теории. Практическая работа. Молярная и молекулярная масса, концентрация, количество вещества. Законы идеального газа. Лабораторные работы. Изучение газовых законов.		2	3	4	9	ГД	0
Тема 4. Скорости газовых молекул, броуновское движение. Распределение молекул по скоростям, распределение Максвелла. Наиболее вероятная, средняя и среднеквадратичная скорость. Барометрическая формула, распределение Больцмана. Практическая работа. Скорости газовых молекул, распределение Больцмана.		2	3		10,75		
Раздел 3. Элементы термодинамики							
Тема 5. Первое начало термодинамики. Термодинамическая система. Внутренняя энергия идеального газа. Первое начало термодинамики. Теплоемкость. Теплоемкость идеального газа при постоянном объеме и постоянном давлении. Первое начало термодинамики Применение первого начала термодинамики к изопроцессам. Практическая работа. Внутренняя энергия идеального газа, степени свободы многоатомных молекул. Первое начало термодинамики. Лабораторная работа. Определение отношения теплоемкостей воздуха при постоянном давлении и постоянном объеме.		3	3	3	9		О
Тема 6. Второе начало термодинамики. Тепловой двигатель, коэффициент полезного действия. Второе Начало термодинамики. Цикл Карно. Энтропия. Теорема Нернста. Практическая работа. Второе начало		2	2		10	ИЛ	
термодинамики. КПД, цикл Карно		47	47	47	50.75		
Итого в семестре (на курсе для ЗАО)		17	17	17	56,75		
Консультации и промежуточная аттестация (Зачет)			0,25				
Раздел 4. Электричество и магнетизм	2						0

Тема 7. Электростатическое поле. Электрический заряд, закон сохранения заряда. Закон Кулона. Напряженность поля, линии напряженности. Принцип суперпозиции. Теорема Гаусса-Остроградского. Работа в электростатическом поле. Потенциал. Связь напряженности и потенциала. Практическая работа. Закон Кулона. Поле и потенциал точечного заряда. Поле системы зарядов, равномерно заряженной сферы и плоскости. Лабораторная работа. Электрическое поле точечного заряда.	3	3	2	5		
Тема 8. Электрический ток, характеристики и условия возникновения. Электрический ток, сила тока, электродвижущая сила (ЭДС). Закон Ома для однородного и неоднородного участка цепи. Электрическое сопротивление проводников. Закон Джоуля-Ленца. Работа и мощность в цепи постоянного тока. Разветвленные цепи, правила Кирхгофа. Коэффициент полезного действия источника тока. Практическая работа. Сила тока. Закон Ома для однородного и неоднородного участка цепи. Лабораторные работы. Измерение электрического тока и разности потенциалов. Закон Ома для однородного участка цепи. Определение внутреннего сопротивления и ЭДС источника постоянного тока.	3	3	4	5	ИЛ	
Тема 9. Магнитное поле. Взаимодействие проводников с током, магнитная индукция. Поле прямого тока. Сила Лоренца и сила Ампера. Закон электромагнитной индукции Фарадея. Практическая работа. Магнитное поле проводников с током. Движение заряженных частиц в магнитном поле. Лабораторные работы. Определение горизонтальной составляющей индукции магнитного поля Земли. Раздел 5. Оптика	3	3	3	5		O

Тема 10. Электромагнитное поле и его характеристики. Электромагнитное поле. Уравнения Максвелла. Волновое уравнение. Плоская и сферическая волна. Электромагнитные волны, их свойства. Скорость света, абсолютный показатель преломления. Энергия волны, вектор Пойнтинга. Практическая работа. Скорость электромагнитных волн. Плоские и		3	3		5		
сферические волны. Энергия, поток и плотность потока электромагнитной энергии.	1						
Тема 11. Геометрическая оптика. Принцип Ферма, законы отражения и преломления. Полное внутреннее отражение. Линзы, построение изображений в линзах. Глаз как оптическая система, дефекты зрения.							
Практическая работа. Законы геометрической оптики. Предельный угол полного внутреннего отражения. Изображение в собирающих и рассеивающих линзах.		3	3	4	5	ил	
Лабораторные работы. Проверка законов отражения и преломления света. Определение фокусного расстояния и оптической силы линзы.							
Тема 12. Волновые явления. Интерференция. Когерентность, оптическая разность хода, максимумы и минимумы при интерференции. Просветление оптики. Явление дифракции. Метод Гюйгенса-Френеля. Дифракция Френеля и Фраунгофера. Дифракционная решетка. Голография.		2	2	4	5	·	
Практическая работа. Дифракция Фраунгофера. Дифракционная решетка. Лабораторные работы. Изучение дифракции Фраунгофера.							
дифракции Фраунгофера.							
Итого в семестре (на курсе для ЗАО) Консультации и промежуточная		17	17 2,5	17	30 24,5		
аттестация (Экзамен) Всего контактная работа и СР по дисциплине			104,75		111,25		

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код	Показатели оценивания результатов обучения	Наименование оценочного
компетенции	показатели оценивания результатов обучения	средства

	Формулирует основные физические законы и сведения, лежащие Вопросы для устного в основе определения свойств конструкционных и собеседования полиграфических материалов
ОПК-1	Использует физические законы, лежащие в основе принципов Практико-ориентированные работы полиграфических технологий.
	Применяет особенности физического подхода к проблемам Практико-ориентированные современной полиграфической техники и технологии.

5.1.2 Система и критерии оценивания

Шкада ополивания	Критерии оценивания со	ормированности компетенций		
Шкала оценивания	Устное собеседование	Письменная работа		
5 (отлично)	При устном собеседовании правильные ответы на вопросы			
4 (хорошо)	При устном собеседовании допускаются несущественные ошибки при ответах на вопросы, которые устраняются в процессе			
3 (удовлетворительно)	При устном собеседовании допускаются ошибки при ответах на вопросы			
2 (неудовлетворительно)	При устном собеседовании допускаются существенные ошибки при ответах на вопросы			
Зачтено	При устном собеседовании допускаются несущественные ошибки при ответах на вопросы, которые устраняются в процессе			
Не зачтено	При устном собеседовании			
	допускаются существенные ошибки прответах на вопросы	и		

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности 5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов
	Семестр 1
1	Основные понятия кинематики поступательного движения: твердое тело, материальная точка, система отсчета, траектория, длина пути, перемещение.
2	Путь и перемещение
3	Средняя и мгновенная скорость.
4	Ускорение, нормальное и тангенциальное ускорение
5	Равнопеременное движение.
6	Движение по окружности. Равномерное вращательное движение. Движение с переменной угловой скоростью.
7	Связь между векторами линейной и угловой скорости. Связь линейных и угловых величин.
8	Фундаментальные силы, поля и взаимодействия
9	І-й закон Ньютона
10	II-й закон Ньютона
11	III-й закон Ньютона
12	Закон сохранения импульса. Примеры применения законов Ньютона.
13	Элементарная работа. Работа постоянной и переменной силы.
14	Понятие замкнутой системы. Кинетическая энергия тела и работа, совершаемая силой.
15	Консервативные и диссипативные силы. Потенциальная энергия. Закон сохранения механической энергии.
16	Принцип относительности Галилея.
17	Основные положения молекулярно-кинетической теории
18	Масса молекул и размеры молекул, количество вещества, число Авогадро. Закон Авогадро.
19	Идеальный газ. Основные газовые законы и обобщенное уравнение состояния идеального газа.

20	Скорости газовых молекул, распределение Максвелла
21	Основное уравнение молекулярно-кинетической теории
22	Понятие температуры, шкала температур. Степени свободы молекул и внутренняя энергия.
23	Внутренняя энергия и теплоемкость. Теплоемкость при постоянном объеме и при постоянном давлении.
24	Первое начало термодинамики. Понятия теплоты и работы, внутренней энергии системы.
25	Второе начало термодинамики, циклические процессы. Тепловая машина и цикл Карно.
26	Третье начало термодинамики
27	Энтропия, свойства энтропии.
	Семестр 2
28	Фундаментальные свойства заряда, понятие точечного заряда, закон Кулона. Электрическое поле.
29	Напряженность электрического поля, силовые линии. Принцип суперпозиции полей.
30	Работа в электростатическом поле. Потенциал электростатического поля. Эквипотенциальные поверхности.
31	Теорема Гаусса-Остроградского
32	Поле равномерно заряженной плоскости и сферы.
33	Электрический ток, характеристики и условия возникновения.
34	Закон Ома для однородного и неоднородного участка цепи.
35	Сопротивление проводников. Удельное сопротивление и его зависимость от температуры.
36	Работа и мощность в цепи постоянного тока. Закон Джоуля-Ленца. Коэффициент полезного действия источника тока.
37	Разветвленные цепи. Правила Кирхгофа.
38	Магнитное поле, характеристики и источники
39	Сила Лоренца
40	Магнитное поле длинного проводника с током
41	Взаимодействие токов. Сила Ампера
42	Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца.
43	Движение заряженных частиц в электрических и магнитных полях.
44	Характеристики электромагнитного поля
45	Уравнения Максвелла, значение и границы применимости.
46	Волновое уравнение. Плоская и сферическая волна.
47	Электромагнитные волны, их свойства. Скорость света, абсолютный показатель преломления.
48	Энергия электромагнитных волн, плотность энергии, поток и плотность потока. Вектор Пойнтинга.
49	Геометрическая оптика: основные понятия и законы геометрической оптики, границы применимости.
50	Внутреннее отражение, явление полного внутреннего отражения и его применение.
51	Понятие линзы, тонкой линзы. Уравнение тонкой линзы в среде и в воздухе.
52	Правила построения изображений в линзах. Глаз как оптическая система, дефекты зрения.
53	Явление интерференции, понятие когерентных волн, оптический длины пути.
54	Условие образования интерференционных максимумов и минимумов.
55	Просветление оптики. Принцип голографии.
56	Явление дифракции. Принцип Гюйгенса-Френеля.
57	Дифракция Фраунгофера. Дифракционная решетка.

5.2.2 Типовые тестовые задания

не предусмотрено

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

- 1. Определить линейную скорость, с которой движется полотно бумаги, разматывающееся с рулона диаметром 960 мм, если рулон вращается со скоростью 10 об./с.
- 2. В закрытом сосуде объемом V = 5 л при нормальных условиях находится кислород. Найти количество вещества, массу, плотность и концентрацию кислорода в сосуде.
- 3. Элемент питания с ЭДС ε = 1,6 В имеет внутреннее сопротивление r = 0,5 Ом. Найти КПД элемента η при токе в цепи I = 2,4 A.
- 4. Какое число штрихов N на единицу длины имеет дифракционная решетка, если зеленая линия ртути $\lambda = 546,1$ нм в спектре первого порядка наблюдается под углом $\phi = 19^{\circ}8'$?
- 5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)
- 5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение	е промежуточной	аттестации	регламентиров	вано лок	кальным	нормативны	и актом	СПбГУПТД
«Положение о прове	дении текущего і	контроля усг	теваемости и пр	омежутс	очной атт	естации обуч	ающихс	«R»

	_				
532	Форма	пиовеления	промежуточной	аттестании по	ЛИСШИППИНЕ

1		i i			
Устная	+	Письменная	Компьютерное тестирование	Иная	

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

При проведении зачета и экзамена время, отводимое на подготовку к ответу, составляет не более 40 мин. Для выполнения практического задания обучающему необходимо иметь калькулятор, также ему предоставляется возможность пользоваться требуемыми нормативно-правовыми документами.

Сообщение результатов обучающемуся производится непосредственно после устного ответа

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор Заглавие		Издательство	Год издания	Ссылка		
6.1.1 Основная учебная литература						
Кузнецов, С. И.	Курс физики с примерами решения задач. Часть III. Геометрическая и волновая оптика. Элементы атомной и ядерной физики. Основы физики элементарных частиц	Томск: Томский политехнический университет	2015	http://www.iprbooksh op.ru/34672.html		
Зюзин, А. В. Московский, С. Б. Туров, В. Е.	Физика. Ч.1. Механика	Москва: Академический проект	2020	http://www.iprbooksh op.ru/110169.html		
	, Курс лекций по физике. , Молекулярная физика. Термодинамика	Томск: Томский политехнический университет	2017	http://www.iprbooksh op.ru/83966.html		
Горбацевич, А. С. Капуцкая, И. А. Кембровская, Н. Г. Медведь, И. Н. Бурова, Л. И.	, ,	Минск: Вышэйшая школа	2018	http://www.iprbooksh op.ru/90800.html		
6.1.2 Дополнительная учебная литература						
Савельева М. Ю.	Физика. Физические основы механики	Санкт-Петербург: СПбГУПТД	2023	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=20239472		
Савельева М. Ю.	Физика. Электричество и магнетизм. Лабораторные работы		2015	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=3121		

6.2 Перечень профессиональных баз данных и информационно-справочных систем

Физическая энциклопедия OnLine [Электронный ресурс]. URL: http://www.physicum.narod.ru/ Базы данных и каталог "Наука в рунете" научно-популярного проекта "Элементы" [Электронный ресурс]. URL: https://elementy.ru/catalog/t2/Fizika

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftOfficeProfessional Microsoft Windows MATLAB

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение
Лекционная аудитория	Мультимедийное оборудование, специализированная мебель, доска
Компьютерный класс	Мультимедийное оборудование, компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду