Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

		УТВЕРЖДАЮ
Пер	овый пр	оректор, проректор по УР
		А.Е. Рудин
«21»	02	2023 года

Рабочая программа дисциплины

Б1.О.07 Математика

Учебный план: 2023-2024 29.03.02 ИТМ Тех и констр трик изд OO №1-1-6.plx

Кафедра: 26 Математики

Направление подготовки:

(специальность) 29.03.02 Технологии и проектирование текстильных изделий

Профиль подготовки:

(специализация)

Технология и конструирование трикотажных изделий

Уровень образования: бакалавриат

Форма обучения: очная

План учебного процесса

Семе	стр	Контактная обучающих	•	Сам.	Контроль,	Трудоё	Форма
(курс для		Лекции	Практ. занятия	работа	час.	мкость, ЗЕТ	промежуточной аттестации
1	УП	34	51	94,75	0,25	5	Зачет
I	РПД	34	51	94,75	0,25	5	Sayer
2	УΠ	34	51	68	27	5	Экзамен
	РПД	34	51	68	27	5	Экзамен
Итого	УΠ	68	102	162,75	27,25	10	
V11010	РПД	68	102	162,75	27,25	10	

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 29.03.02 Технологии и проектирование текстильных изделий, утверждённым приказом Минобрнауки России от 22.09.2017 г. № 963

Составитель (и):		
без ученой степени, Старший преподаватель	 Вольнова	Диана
	Владимировна	a
без ученой степени, Старший преподаватель	 Кольцова	Татьяна
	Борисовна	
без ученой степени, Старший преподаватель	 Матвеева	Анастасия
- ·	Викторовна	
без ученой степени, Старший преподаватель	 Мерзлякова	Наталья
	Алексеевна	1 l = = ×
доктор технических наук, Заведующий кафедрой	 Рожков Николаевич	Николай
	Пиколасьич	
От кафедры составителя:	 Рожков Никола	ай
Заведующий кафедрой математики	Николаевич	
От выпускающей кафедры:	 Труевцев Ален	ксей
Заведующий кафедрой	Викторович	
Методический отдел:		

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать компетенции обучающегося в области использования основных математических закономерностей и применения математических моделей в профессиональной деятельности. Также способствовать формированию компетенций, для успешного овладения которыми необходимо умение логически мыслить и грамотно излагать свои мысли.

1.2 Задачи дисциплины:

- Ознакомить студентов с основами математических знаний, необходимых для решения теоретических и прикладных задач в различных областях деятельности;
 - Воспитать абстрактное логическое мышление и умение строго излагать свои мысли;
- Привить студентам основные навыки использования учебной и справочной литературы по математике, а также по дисциплинам, в которых применяются математические методы;
 - Подготовить студентов к практическому применению полученных знаний.

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Дисциплина базируется на компетенциях, сформированных на предыдущем уровне образования.

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-1: Способен решать вопросы профессиональной деятельности на основе естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования

Знать: основные понятия, законы и алгоритмы всех изучаемых разделов математики

Уметь: использовать математические знания для решения различных задач

Владеть: навыками применения современного математического инструментария для решения практических задач; построения, и применения математических моделей для оценки состояния и прогноза развития производственных процессов

ОПК-8: Способен использовать аналитические модели при расчете технологических параметров, параметров структуры, свойств текстильных материалов и изделий

Знать: теоретические основы методов математического моделирования, применяемых в целях описания параметров технологических процессов

Уметь: применять математические методы решения задач оптимизации при проектировании технологических параметров, параметров структуры и свойств текстильных материалов и изделий

Владеть: методами математического моделирования, применимых для расчетов технологических параметров, параметров структуры, свойств текстильных материалов и изделий

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	тр 3AO)	Контактн работа	іая		Инновац.	Форма
Наименование и содержание разделов, тем и учебных занятий	Семестр (курс для ЗАО)	Лек. (часы)	Пр. (часы)	СР (часы)	формы занятий	текущего контроля
Раздел 1. Основы линейной алгебры						
Тема 1. Матрицы и определители. Матрицы. Свойства матриц. Действия над матрицами. Определители. Свойства определителей. Способы подсчета определителей. Практические занятия: Действия над матрицами. Способы подсчета определителей. (Решение задач)		2	2	8		-ДЗ,З
Тема 2. Тема 2. Системы линейных алгебраических уравнений. Системы трех линейных уравнений с тремя неизвестными, формулы Крамера, метод полного исключения. Практические занятия: Решение систем линейных алгебраических уравнений методом полного исключения, по формулам Крамера. (Решение задач)		2	4	8	ИЛ	
Раздел 2. Векторы]
Тема 3. Определение вектора. Равенство векторов. Коллинеарные и компланарные векторы. Линейные операции над векторами. Проекции вектора на оси координат. Запись вектора в форме проекций. Базис. Практические занятия: Линейные операции над векторами. (Решение задач)	1	2	4	7,75		Д3,3
Тема 4. Произведения векторов. Произведения векторов, заданных в форме проекций. Скалярное, смешанное и векторное произведения векторов. Определение, свойства. Практические занятия: Применение скалярного, смешанного и векторного произведения векторов для решения прикладных задач. (Решение задач)		4	4	8	ГД	
Раздел 3. Аналитическая геометрия на						
плоскости Тема 5. Метод координат на плоскости. Системы координат на плоскости, основные задачи. Преобразования систем координат. Практические занятия: Переходы в		2	2	4		3,ДЗ
системах координат. (Решение задач) Тема 6. Прямая на плоскости. Основные уравнения прямой. Угол между прямыми. Условия параллельности и перпендикулярности прямых. Практические занятия: Применение основных уравнений прямой для решения задач. (Решение задач)		2	4	8		, о, до

TOMO 7 VOIABLIO BEODOSO BODGBIO	1				
Тема 7. Кривые второго порядка. Окружность, эллипс, гипербола, парабола, их канонические уравнения, графики. Свойства. Общее уравнение кривой второго порядка. Практические занятия: Построение различных кривых второго порядка, нахождение их параметров. (Решение задач)	2	4	8	ИЛ	
Раздел 4. Аналитическая геометрия в пространстве					
Тема 8. Плоскость в пространстве. Координаты в пространстве. Плоскость в пространстве. Уравнения плоскости, проходящей через данную точку перпендикулярно данному вектору, уравнение плоскости, проходящей через три данные точки, общее уравнение. Практические занятия: Применение уравнений плоскости для решения задач. (Решение задач)	2	4	9		дз,к
Тема 9. Прямая в пространстве. Прямая в пространстве как линия пересечения плоскостей. Канонические и параметрические уравнения прямой. Уравнения прямой, проходящей через две заданные точки. Прямая и плоскость в пространстве. Практические занятия: Применение уравнений прямой в пространстве для решения задач. (Решение задач)	4	4	10	ГД	
Раздел 5. Дифференциальное исчисление					
функции одной переменной Тема 10. Введение в математический					
понятие последовательности. Основные понятия о функции. Введение в анализ функции одной переменной. Бесконечно малые и бесконечно большие величины. Предел функции. Правила вычисления пределов. Замечательные пределы. Непрерывность функции. Свойства непрерывных функций. Практические занятия: Вычисление пределов функций.Исследование функции на непрерывность, поиск точек разрыва. (Решение задач)	4	6	8		
Тема 11. Дифференциальное исчисление функции одной переменной. Определение производной и ее геометрический смысл. Правила дифференцирования. Таблица производных. Производная сложной функции. Производные высших порядков. Определение, правило вычисления. Определение дифференциала и его геометрический смысл. Инвариантность форм первого дифференциала. Дифференциалы высших порядков. Приложение к приближенным вычислениям. Практические занятия: Вычисление производных функций. Применение дифференциала функции к приближенным вычислениям.	4	6	8		Д3,3,К

Тема 12. Применение дифференциального исчисления. Основные теоремы дифференциального исчисления. Правило Лопиталя и его применение к раскрытию неопределенностей. Исследование функции по первой и второй производной: монотонность функции, экстремумы функции (необходимые и достаточные условия). Условия выпуклости, вогнутости, точки перегиба и асимптоты плоской кривой. Практические занятия: Применение правил Лопиталя для вычисления пределов функций. Полное исследование и построение графиков функций. (Решение задач) Итого в семестре (на курсе для ЗАО) Консультации и промежуточная аттестация		34	7 51	94,75	ил	
(Зачет)		0,2	25 			
Раздел 6. Функции нескольких переменных						
Тема 13. Функции двух и нескольких переменных. Основные определения. Приращение функции. Частные производные, частные и полный дифференциал функции многих переменных. Практические занятия: Вычисление частных производных функций. Применение полного дифференциала функций многих переменных для решения практических задач. (Решение задач) Тема 14. Экстремумы функции двух и		2	6	7		3,Д3
Гема 14. Экстремумы функции двух и нескольких переменных. Основные понятия. Необходимые и достаточные условия существования экстремума функции двух переменных. Практические занятия: Нахождение экстремумов функций многих переменных (Решение задач)		2	4	7	ИЛ	
Раздел 7. Неопределенный интеграл Тема 15. Неопределенный интеграл и его	2					
тема то. пеопределенный интеграл и его вычисление. Первообразная и неопределенный интеграл. Свойства первообразной. Свойства неопределенного интеграла, вытекающие из определения. Линейные свойства. Таблица интегралов. Практические занятия: Применение таблицы для вычисления простейших интегралов. (Решение задач)	_	4	6	7		
Тема 16. Основные классы интегрируемых функций. Основные методы интегрирования: метод замены переменной, метод интегрирования по частям, метод разложения на простейшие. Стандартные замены. Практические занятия: Применение метода замены переменной, интегрирования по частям и метода разложения на простейшие для вычисления неопределенных интегралов (Решение задач)		2	6	7	ИЛ	3

Раздел 8. Определенный интеграл					
Тема 17. Определенный интеграл. Несобственные интегралы. Определение определенного интеграла, его					
свойства. Линейные свойства определенного интеграла. Интеграл с переменным верхним пределом. Формула Ньютона — Лейбница. Методы вычисления определенного интеграла. Несобственные интегралы. Практические занятия: Вычисление определенного интеграла.(Решение задач)	4	4	7		
Тема 18. Приложения определенного интеграла. Приложения определенного интеграла к задачам геометрии: вычисление площадей плоских фигур, объемов тел переменного сечения. Объем тела вращения. Практические занятия: Применение определенного интеграла для решения практических задач. (Решение задач)	2	2	5	ГД	
Раздел 9. Дифференциальные уравнения и ряды					
Тема 19. Числовые множества, основные виды. Множество комплексных чисел, действия с комплексными числами.	2				
Тема 20. Дифференциальные уравнения первого порядка. Определение дифференциального уравнения первого порядка. Определение решения. Начальные условия. Основные виды дифференциальных уравнений: уравнения с разделенными и разделяющимися переменными, линейные, однородные. Практические занятия: Решение дифференциальных уравнений первого порядка.(Решение задач)	2	4	5		
Тема 21. Дифференциальные уравнения второго порядка. Определение дифференциального уравнения второго порядка. Определение решения. Начальные условия. Теорема существования и единственности решения. Случаи, допускающие понижения порядка. Практические занятия: Решение дифференциальных уравнений второго порядка, допускающих понижение порядка. (Решение задач)	4	4	7		О,3,Д3,К
Тема 22. Линейные дифференциальные уравнения второго порядка. Линейные однородные и неоднородные дифференциальные уравнения второго порядка. Теоремы о свойствах решений. Теоремы об общем решении. Уравнения второго порядка с постоянными коэффициентами. Метод решения линейных однородных и неоднородных уравнений с постоянными коэффициентами. Практические занятия: Решение линейных дифференциальных уравнений второго порядка с постоянными коэффициентами (Решение задач)	4	5	7		

T 00 III					
Тема 23. Числовые ряды.					
Определение числового ряда.					
Необходимый признак сходимости.					
Правила действия с рядами. Ряды с					
положительными членами. Признаки					
сходимости. Знакопеременные ряды.					
Теорема Лейбница для	2	4	5		
знакочередующихся рядов.					
Практические занятия: Исследование на сходимость знакоположительных					
числовых рядов. Применение теоремы Лейбница для исследования					
Лейбница для исследования знакочередующихся рядов на					
сходимость. (Решение задач)					
Тема 24. Функциональные ряды.					
Степенные ряды. Определение					
степенного ряда. Область сходимости степенного ряда. Теорема Абеля. Радиус					
и интервал сходимости.					
Ряды Тейлора и Маклорена.	4	6	4	ГД	
Практические занятия: Нахождения	7	U	7	' Д	
1 .					
радиуса и интервала сходимости степенного ряда. Разложение функции в					
ряд Тейлора и Маклорена. (Решение					
задач)					
Итого в семестре (на курсе для ЗАО)	34	51	68		
Консультации и промежуточная	_				
аттестация (Экзамен)	2,	,5	24,5		
Всего контактная работа и СР по дисциплине	172	2,75	187,25		
дисциплине					

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
	Формулирует и объясняет основные понятия, законы, теоремы и алгоритмы изучаемых разделов математики.	Вопросы для устного собеседования
ОПК-1	Решает типовые задачи и примеры по основным изучаемым разделам математики.	Вопросы для тестирования
	Объясняет взаимосвязь основных математических моделей и методов и их значение при решении практических задач.	Практико-ориентированные задания
	Описывает методики расчета технологических параметров, характеризующих свойства материалов и изделий	Вопросы для устного собеседования
ОПК-8	Использует аналитический аппарат при проектировании технологических и иных параметров материалов и изделий	Вопросы для тестирования
	Применяет методики расчета технологических параметров и иных параметров материалов и изделий	Практико-ориентированные задания

5.1.2 Система и критерии оценивания

Шково ополивопия	Критерии оценивания сформированности компетенций					
Шкала оценивания	Устное собеседование	Письменная работа				
5 (отлично)	Полный, исчерпывающий ответ, явно демонстрирующий глубокое понимание предмета и широкую эрудицию в оцениваемой области. Критический,					

	оригинальный подход к материалу.	
4 (хорошо)	Ответ полный, основанный на проработке всех обязательных источников информации. Подход к материалу ответственный, но стандартный.	
3 (удовлетворительно)	Ответ воспроизводит в основном только лекционные материалы, без самостоятельной работы с рекомендованной литературой. Демонстрирует понимание предмета в целом, без углубления в детали. Присутствуют существенные ошибки или пробелы в знаниях по некоторым темам.	
2 (неудовлетворительно)	Неспособность ответить на вопрос без помощи экзаменатора. Незнание значительной части принципиально важных элементов дисциплины. Многочисленные грубые ошибки.	
Зачтено	Демонстрирует понимание предмета в целом, без углубления в детали.	
Не зачтено	Неспособность ответить на вопрос без помощи экзаменатора. Незнание значительной части принципиально важных элементов дисциплины. Многочисленные грубые ошибки.	

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности 5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов				
	Семестр 1				
1	Применения понятия производной для исследования свойств функции: □ возрастание и убывание функции □ точки экстремума □ выпуклость ее графика □ точки перегиба графика □ асимптоты (вертикальные и наклонные)				
2	Правила Лопиталя раскрытия неопределенностей				
3	Теоремы Ролля и Лагранжа, их геометрический смысл				
4	Производные и дифференциалы высших порядков				
5	Производная, ее определение, геометрический и механический смыслы, правила вычисления				
6	Предел функции. Теоремы о пределах. Раскрытие неопределенностей. Замечательные пределы.				
7	Кривые второго порядка (эллипс, окружность, гипербола, парабола), их канонические уравнения, свойства, чертеж.				
8	Угол между прямой и плоскостью, условия их параллельности и перпендикулярности				
9	Прямая в пространстве. Уравнения прямой в пространстве.				
10	Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей				
11	Плоскость в пространстве. Различные виды уравнения плоскости.				
12	Прямая на плоскости. Виды уравнений прямой.				
13	Векторы в геометрической и координатной формах. Определение. Свойства. Действия над векторами. Скалярное, векторное и смешанное произведения векторов. Их геометрическое приложения.				
14	Системы линейных уравнений. Совместные и несовместные системы. Теорема Кронекера — Капелли. Формулы Крамера.				
15	Матрицы и определители. Определения. Свойства. Действия над матрицами. Раскрытие определителей второго и третьего порядков.				
	Семестр 2				
16	Функции двух переменных (определение, предел, непрерывность)				
17	Экстремум функции двух переменных (необходимое и достаточное условия существования экстремума)				

18	Неопределенный интеграл (определение, свойства, методы вычисления)
19	Определенный интеграл (определение, свойства, теорема о среднем). Формула Ньютона — Лейбница.
20	Определенный интеграл. Методы вычисления.
21	Несобственные интегралы первого и второго родов. Определение. Сходимость.
22	Приложения определенного интеграла. Вычисление площадей плоских фигур
23	Комплексные числа. Определение. Действия над комплексными числами. Формула Муавра. Формы записи комплексного числа.
24	Дифференциальные уравнения первого порядка, их основные виды (с разделяющимися и разделенными переменными, линейные, однородные). Общее решение и задача Коши.
25	Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
26	Числовые ряды. Определение. Свойства. Необходимый признак сходимости.
27	Признаки сходимости знакоположительных и знакопеременных рядов, абсолютная сходимость.
28	Функциональные ряды. Степенные ряды. Область сходимости. Теорема Абеля. Радиус и интервал сходимости.
29	Ряды Тейлора и Маклорена

5.2.2 Типовые тестовые задания

Типовые тестовые задания находятся в Приложении к данному РПД

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

Типовые практико-ориентированные задания (задачи, кейсы) находятся в Приложении к данному РПД

- 5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)
- 5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

5.3.2	Форма	проведения	промежуточной	аттестации по	о дисциплине

Устная	+	Письменная	Компьютерное тестирование	Иная	

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

- на подготовку отводится 45 60 минут
- на ответ по билету и дополнительные вопросы 30 35 минут
- использование вспомогательной литературы (справочников, конспектов и т.п.) не предусмотрено

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка
6.1.1 Основная учебн	ая литература			
Карпова, Е. А., Карпухина, О. Е.,	Высшая математика. Том 1. Линейная алгебра. Векторная алгебра. Аналитическая геометрия	Санкт-Петербург: Национальный минерально-сырьевой университет «Горный»	2015	http://www.iprbooksh op.ru/71687.html
Березина, Н. А.	Высшая математика	Саратов: Научная книга	2019	http://www.iprbooksh op.ru/80978.html
Ивакин, В. В., Керейчук, М. А., Могилева, Л. М., Потапенко, А. А.,	Высшая математика. Том 3. Элементы высшей алгебры. Интегральное исчисление функций одной переменной и его приложения	Санкт-Петероург: Национальный минерально-сырьевой	2015	http://www.iprbooksh op.ru/71689.html

Зацепин, М. А., Колтон, Г. А., Лебедев, И. А., Обручева, Т. С., Яковлева, А. А.,	Высшая математика. Том 4. Дифференциальные уравнения. Ряды. Ряды Фурье и преобразование Фурье. Дифференциальное и интегральное исчисление функций нескольких переменных. Теория поля	Санкт-Петербург: Национальный минерально-сырьевой	2015	http://www.iprbooksh op.ru/71690.html
Волынская, И. А., Карпухина, О. Е., Скепко, О. А., Обручева, Т. С., Господариков, А. П.	Высшая математика. Том 2. Начало математического анализа. Дифференциальное исчисление функций одной переменной и его приложения	Санкт-Петербург: Национальный	2015	http://www.iprbooksh op.ru/71688.html
6.1.2 Дополнительна	я учебная литература			
Югова, Н. В.	Высшая математика. Дифференциальные уравнения	Новосибирск: Новосибирский государственный технический университет	2020	http://www.iprbooksh op.ru/99175.html
Шнарева, Г. В.	Высшая математика (линейная алгебра)	Симферополь: Университет экономики и управления	2020	http://www.iprbooksh op.ru/101397.html

6.2 Перечень профессиональных баз данных и информационно-справочных систем

- 1. Тренажер по высшей математике [Электронный ресурс]. URL: http://e-math.ru
- 2. Информационная система «Единое окно доступа к образовательным ресурсам» [Электронный ресурс]. URL: http://window.edu.ru
 - 3. Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftOfficeProfessional Microsoft Windows

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение
Лекционная аудитория	Мультимедийное оборудование, специализированная мебель, доска
Учебная аудитория	Специализированная мебель, доска

Приложение

рабочей программы дисциплины	Математика	
· · · · · ·		папменование уполициины

по направлению подготовки <u>29.03.02 Технологии и проектирование текстильных изделий</u> наименование ОП (профиля): <u>все профили</u>

5.2.2 Типовые тестовые задания

№ п/п	Формулировки тестовых заданий
1	Тема 1. Матрицы и определители. Действия над матрицами.
	При каком значении λ определитель $\begin{vmatrix} 6 & -3 & 0 \\ 2 & \lambda - 2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 0$
	1) 2; 2) 1; 3) 0,5; 4) 0
2	1) 2; 2) 1; 3) 0,5; 4) 0 Тема 1. Матрицы и определители. Действия с матрицами.
	Если $A = \begin{pmatrix} -1 & 2 \\ 0 & -5 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}$, то матрица C=A-2B имеет вид:
3	$1)\binom{-3}{-6} \frac{4}{-9};$ $2)\binom{3}{-6} \frac{-4}{-9};$ $3)\binom{-3}{6} \frac{4}{-9};$ $4)\binom{-3}{-6} \frac{4}{9}$ Тема 2. Системы линейных алгебраических уравнений.
	Если $(x_0;y_0)$ - решение системы линейных уравнений $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & 5 \end{pmatrix}$, то x_0-y_0 равно
	1) -7,5; 2) 0,5; 3)-0,5; 4) 7,5
4	1) -7,5; 2) 0,5; 3)-0,5; 4) 7,5 Тема 3. Векторы. Линейные операции над векторами.
	Длина вектора $\vec{a}=6\vec{\iota}-2\vec{\jmath}$ равна:
	1) $2\sqrt{10}$; $2)2\sqrt{5}$; $3)8$; $4)2\sqrt{2}$ Тема 4. Векторы. Произведения векторов. Применение произведения векторов для решения
5	Teма 4. Векторы. Произведения векторов. Применение произведения векторов для решения прикладных задач
	Даны векторы $\vec{a}=(-1,\!2-4)$ и $\vec{b}=(2,\!-3,\!0)$, тогда их скалярное произведение равно:
	1) 5; 2) -6; 3) -8; 4) 8
6	Teма 4. Векторы. Произведения векторов. Применение произведения векторов для решения прикладных задач
	При каком значении m векторы $\vec{a}=(4;m;-8)u\ \vec{b}=(-2;-4;1)$ перпендикулярны?
	1)4; 2) -4; 3) 0,4; 4) 0
7	Тема 5. Аналитическая геометрия на плоскости. Метод координат
	Даны две точки плоскости <i>А</i> (8; -6) и <i>В</i> (-2;4), тогда середина отрезка <i>АВ</i> имеет координаты:
	1) (3;-1); 2) (5;-5); 3) (3;1); 4) (3;-5)
8	Тема 6. Аналитическая геометрия на плоскости. Прямая на плоскости

	Дано уравнение прямой на плоскости: $3x - 2y - 1 = 0$, тогда угловой коэффициент этой прямой равен:
	1) 2/3; 2) 3/2; 3) -3/2; 4) -2/3
9	Тема 6. Аналитическая геометрия на плоскости. Прямая на плоскости
	Уравнением прямой, перпендикулярной прямой $y = \frac{1}{2}x - 5$, является
	1) $y = \frac{1}{2}x + 5$; $2)y = -2x + 5$; $3)y = -\frac{1}{2}x - 3$; $4)y = 2x - 3$
10	Тема 7. Аналитическая геометрия на плоскости. Прямая на плоскости
	Кривые второго порядка.
	Дано уравнение гиперболы $\frac{(x+2)^2}{1} - \frac{(y-5)^2}{8} = 1$.
	Тогда расстояние между ее фокусами равно:
	1)6; 2) 9; 3)3; 4) $2\sqrt{5}$
11	Тема 8. Аналитическая геометрия в пространстве. Плоскость в пространстве
	Нормальный вектор плоскости $x - 2y + 5z - 15 = 0$ имеет координаты:
	1) (1;2; 15); 2) (1;-2; 5); 3) (-1;2;3); 4) (1;2;-15)
12	Тема 9. Аналитическая геометрия в пространстве. Прямая в пространстве
	Направляющий вектор прямой $\frac{x}{1} = \frac{y+5}{-3} = \frac{z-5}{2}$ имеет координаты:
	1) (1;5;-5); 2) (0;5;-5); 3) (1;-3;2); 4) (2;3;5)
13	Тема 10. Дифференциальное исчисление функции одной переменной. Введение в математический анализ
	Найти область определения функции $y = \frac{ln(1+x)}{x-1}$:
	* 1
14	1) (1;∞); 2) (-∞;1) ∪ (1;∞); 3) [-1;1) ∪ (1;∞); 4)(-1;1) ∪ (1;∞)
14	Тема 10. Дифференциальное исчисление функции одной переменной. Введение в математический анализ
	$\lim_{x\to 0} \frac{\sin 7x}{\sin 10x}$ paseh:
	1) 0,7; 2) -0,7; 3)0; 4)1
15	Тема 10. Дифференциальное исчисление функции одной переменной. Введение в математический анализ
	Обозначив 0 – бесконечно малую величину, ∞ - бесконечно большую величину, С – конечную ненулевую
	величину, определить, чему равно соотношение: $\frac{\omega + C}{0}$
	1) 0; 2) ∞; 3) С; 4) неопределенность
16	Тема 11. Дифференциальное исчисление функции одной переменной. Производная функции.
	Производная функции $y = e^{x^2+3}$ имеет вид: 1) xe^{x^2+3} 2) $2xe^{x^2+3}$ 3) $-2xe^{x^2+3}$ 4) $(x^2+3)e^{x^2+3}$
	-,,,
17	Тема 11. Дифференциальное исчисление функции одной переменной. Производная функции.
	Производная функции $y = ln(1 - x^2)$ в точке x =2 равна:

1)	3/4;

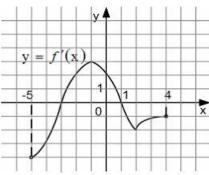
2) -3/4;

3) 4/3;

4) -4/3

18 Тема 11. Дифференциальное исчисление функции одной переменной. Производные и дифференциалы высших порядков.

 y_{xx}'' от функции $y = \frac{1}{x^2}$ равна:


$$1)6/x^4$$
;

$$2)-6/x^4$$
;

3)
$$6x^4$$
;

4)
$$-6x^4$$

19 Тема 12. Применение дифференциального исчисления

Функция y = f(x) определенна на промежутке (-5;4). На рис. изображен график функции y = f'(x).

Тогда точка минимума на промежутке (-5;4)

20 Тема 13. Функции двух и нескольких переменных.

Область определения функции $Z = \frac{1}{\sqrt{9-x^2-y^2}}$

1)
$$x^2 - y^2 \ge 9$$
; 2) $x^2 + y^2 < 9$; 3) $x^2 + y^2 \ge 9$; 4) $x^2 - y^2 > 9$
Тема 13. Функции двух и нескольких переменных.

21

Найти grad(z)функции z = arctg(x + y) в точке (0; 0):

1) 2; 2) -2; 3)0; 4) 1 Тема 14. Экстремумы функции двух и нескольких переменных. 22

Найти критическую точку функции $z = 2xy + x^2 + y^2$.

1) (0;0); 2) (1;1); 3) (-1;-1) 4) (2;2) Тема 15. Неопределенный интеграл и его вычисление. 23

Множество первообразных функции $f(x) = \frac{x+8}{x+1}$ имеет вид:

1)
$$x + ln|x + 1| + C$$
;

2)
$$x - 7 \ln|x + 1| + C$$
;

3)
$$x + 7 \ln|x + 1| + C$$

4)
$$\frac{x^2}{a} + 8x + C$$

3) $x + 7 \ln|x + 1| + C$; 4) $\frac{x^2}{2} + 8x + C$. Тема 15. Неопределенный интеграл и его вычисление. 24

Множество первообразных функции $f(x) = \sqrt[3]{x}$ имеет вид:

1)
$$\sqrt[3]{x^4} + C$$
, 2) $\frac{3}{4}\sqrt[3]{x^4} + C$, 3) $\frac{4}{3}\sqrt[3]{x^4} + C$, 4) $-\frac{3}{2\sqrt[3]{x^2}} + C$.

25 Тема 15. Неопределенный интеграл и его вычисление.

Каков геометрический смысл определенного интеграла от функции y = f(x) в интервале [a,b] в декартовой системе координат?

	1). Длина линии y = f(x) в интервале [a,b];					
	2). Площадь фигуры, ограниченной линией у = f(x) в интервале [a,b];					
	3). Среднее значение функции у = f(x) в интервале [a,b];					
26	4). Произведение среднего значения функции в интервале [a,b] на длину интервала. Тема 16. Основные классы интегрируемых функций.					
20	Множество первообразных функции $f(x) = \sin^2 3x$					
27	1) $\frac{x}{2} - \frac{1}{3}\sin 3x + C$; 2) $\frac{x}{2} - \frac{1}{6}\sin 3x + C$; 3) $\frac{x}{2} + \frac{1}{6}\sin 3x + C$; 4) $\sin^3 3x + C$ Тема 16. Основные классы интегрируемых функций.					
-	Какой интеграл не выражается в элементарных функциях?					
	1). $\int \frac{x}{\sqrt{x+1}} dx$; 2) $\int xe^{-x^2} dx$; 3) $\int e^{-x^2} dx$; 4) $\int \cos^4 2x dx$					
28	Тема 17. Определенный интеграл. Несобственные интегралы.					
	Какой из приведенных ниже интегралов является несобственным, если функция f(x) - непрерывна?					
	1). $\int_0^a f(x)dx$ 2) $\int_{-a}^a f(x)dx$ 3). $\int f(x)dx$ 4). $\int_a^{\infty} f(x)dx$					
29	Тема 17. Определенный интеграл. Несобственные интегралы.					
	Чему равен интеграл $\int_1^\infty \frac{\ln x}{x} dx$?					
	1) 1/8; 2) интеграл расходится; 3) 0; 4) 2					
30	Тема 18. Приложения определенного интеграла.					
	Чему равна площадь фигуры на рисунке?					
	ν _Λ					
	D $f(x)$					
	C					
	$\varphi(x)$					
	A B X					
	1). $\int_{A}^{B} f(x)dx$ 2). $\int_{C}^{D} (f(x) - \varphi(x))dx$ 3). $\int_{A}^{B} f(x)dx - \int_{A}^{B} \varphi(x)dx$ 4). $\int_{A}^{B} f(x)dx - \int_{B}^{A} \varphi(x)dx$					
31	Тема 19. Числовые множества. Множество комплексных чисел					
	Модуль комплексного числа $z=2-3i$ равен:					
	$1)\sqrt{5}$; 2) 13; 3)5; 4) $\sqrt{13}$.					
32	Тема 19. Числовые множества. Множество комплексных чисел					
	Если $z_1 = 1 - i; z_2 = 4 + i$, то $z_1 \cdot z_2$ равно:					
	1) $5 + 3i$; 2) $5 - 3i$; 3) $3 - i$; 4) $3i$					
33	Тема 20. Дифференциальные уравнения первого порядка.					

	Какое из уравнений не является дифференциальным уравнением с разделяющимися переменными?
	1) $\sqrt{y^2 + 1}dx = xydy$; 2) $\frac{dy}{dx} = f(x) \cdot g(y)$;
	3) $y' + p(x) \cdot y = g(x)$; 4) $\frac{dy}{y} = ctgxdx$
34	Тема 20. Дифференциальные уравнения первого порядка.
	Общий интеграл дифференциального уравнения $\frac{dy}{y^2} = xdx$ имеет вид:
	$1) - \frac{1}{y} = \frac{x^2}{2} + C; 2) \frac{1}{y} = \frac{x^2}{2} + C; 3) y = \frac{x^2}{2} + C; 4) - \frac{1}{y} = x^2 + C$
35	Тема 21. Дифференциальные уравнения второго порядка.
	Дифференциальным уравнением второго порядка является:
	$1)y\frac{dy}{dx} - y^2tgx = x; 2)4y'' - 3y' = 5e^x; 3)4y'' - 3y''' + 2y = 5e^x; 4)x^2y^2 - 2xy + 1 = 0$
36	Тема 22. Линейные дифференциальные уравнения второго порядка.
	Дано дифференциальное уравнение $y'' - y' - 6y = 0$, тогда характеристическое уравнение будет иметь вид:
	$1)6k^2 - k - 1 = 0$; $2)k^2 + k + 6 = 0$; $3)k^2 + k - 6 = 0$; $4)k^2 - k - 6 = 0$
37	$1)6k^2-k-1=0; \ \ 2)k^2+k+6=0; \ \ \ 3)k^2+k-6=0; \ \ \ \ 4)k^2-k-6=0$ Тема 23. Числовые ряды.
	Какой из данных рядов является сходящимся:
	$1) \sum_{n=1}^{\infty} \frac{1}{n}; \ 2) \sum_{n=1}^{\infty} \frac{1}{n^3}; \ 3) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}; \ 4) \sum_{n=1}^{\infty} 3^n$
38	Тема 23. Числовые ряды.
	Для какого из следующих рядов верно утверждение: если $\lim_{n \to \infty} u_n = 0$ ряд достоверно сходится:
	$1)\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}; 2)\sum_{n=1}^{\infty} \frac{1}{n}; 3)\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}; 4)\sum_{n=1}^{\infty} \frac{3^n}{n!}$

Приложение

рабочей программы дисциплины	Математика
	наименование дисциплины
по направлению подготовки 29.03.02 Технологи	и и проектирование текстильных изделий
наименование ОП (профиля): все профили	

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

№ п/п	Условия типовых практико-ориентированных заданий (задач, кейсов)
1	Тема 1. Матрицы и определители.
	Даны две матрицы $A=\begin{pmatrix}1&2\\3&1\end{pmatrix}$ и $B=\begin{pmatrix}-1&3\\1&1\end{pmatrix}$.
	Требуется найти $C = A \cdot B - 2A$.
2	Тема 2. Системы линейных алгебраических уравнений.
	Система трёх линейных уравнений с тремя неизвестными x_1 , x_2 , x_3 задана расширенной матрицей $\begin{pmatrix} 1 & 2 & 1 & 4 \\ 3 & -5 & 3 & 1 \\ 2 & 7 & -1 8 \end{pmatrix}$.
	Требуется: 1) записать систему в канонической форме (в виде системы уравнений),
	2) найти решение этой системы методом полного исключения,
	3) решить эту же систему по формулам Крамера.
3	Тема 4. Векторы.
	Даны вершины пирамиды $A(6, 7, 13); B(2, 4, 6); C(4, 7, 12); Q(6, 16, 24),$ причём точки A, B, C -вершины её основания.
	Средствами векторной алгебры найти:
	1) векторы с началом в точке В и концом в остальных вершинах пирамиды;
	2) длину и направляющие косинусы вектора $\overline{\mathit{BC}}$;
4	Тема 4. Векторы. Произведения векторов
	Даны вершины пирамиды $A(6, 7, 13); B(2, 4, 6); C(4, 7, 12); Q(6, 16, 24), причём точки A, B, C-вершины её основания.$
	Средствами векторной алгебры найти:
	1) скалярное произведение векторов \overline{BC} и \overline{BQ} ;
	2) угол φ между рёбрами \overline{BC} и \overline{BQ} ;
	3) векторное произведение векторов \overline{BC} и \overline{BA} ;
	4) площадь основания пирамиды;5) объём пирамиды.
5	Тема 5. Метод координат на плоскости
	Треугольник <i>ABC</i> задан своими вершинами: $A(5,7);B(8,4)C(3,-3)$.
	Найти длину высоты h, проведённой из вершины C.

6	Тема 6. Прямая на плоскости.
	Треугольник <i>ABC</i> задан своими вершинами: $A(5,7);B(8,4)C(3,-3)$.
	Найти: 1) уравнение стороны <i>BC</i> (в отрезках на осях),
	2) уравнение стороны ВА (в общем виде),
	3) угол φ между сторонами BC и BA ,
	4) уравнение медианы <i>BM</i> (с угловым коэффициентом),
	5) уравнение высоты АК (с угловым коэффициентом),
	6) уравнение прямой L, проходящей через точку С ВА,
7	Тема 7. Кривые второго порядка.
	Указать тип кривой второго порядка, найти ее параметры, сделать чертеж:
	$\frac{(x+5)^2}{16} - \frac{y^2}{9} = 1.$
8	Тема 8. Плоскость в пространстве
	Даны четыре точки: $A(2,4,6); B(4,7,12); C(6,8,13); D(4,4,8).$
	Найти:
	1) уравнение плоскости (АВС);
	2) угол β между прямой (AD) и плоскостью (ABC);
	3) уравнение прямой (L), проходящей через $(\cdot)D \perp$ пл. (ABD);
	4) угол γ между плоскостью (ABC) и плоскостью (ABD);
	5) уравнение плоскости (Q), проходящей через(·) С ∥ плоскости (<i>ABD</i>).
9	Тема 9. Прямая в пространстве
	Даны четыре точки: $A(2,4,6)$; $B(4,7,12)$; $C(6,8,13)$; $D(4,4,8)$.
	Найти:
	1) уравнение прямой (AB) в канонической форме;
	2) уравнение прямой (R), проходящей через точку D параллельно (AB);
	3) тупой угол α между прямыми (AB) и (AD), т.е. $\alpha = (AB \ , \ AD)$
10	Тема 10. Введение в математический анализ.
	Найти область определения функции $y = \frac{log_2(x-1)}{x-3}$.
11	Тема 10. Введение в математический анализ. Пределы и непрерывность.
	Вычислить пределы, не пользуясь правилом Лопиталя:
	1) $\lim_{x \to 1} \frac{x^3 + 3^x}{\sqrt{x + 8}}$; 2) $\lim_{x \to \infty} \frac{3x^2 - 1}{5x^2 + 2x}$; 3) $\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 + 7x + 10}$; 4) $\lim_{x \to 0} \frac{\cos 3x - \cos 4x}{x \sin 3x}$
12	Тема 10. Введение в математический анализ. Пределы и непрерывность.
	Найти точки разрыва функции. Построить чертеж.

	$y = \begin{cases} x, & x \le -2\\ 4 - x^2, & -2 < x \le 0.\\ 4 - x, & x > 0 \end{cases}$
13	Тема 11. Дифференциальное исчисление функции одной переменной.
	Пользуясь формулами дифференцирования, найти производные следующих функций:
	$1)y = \frac{\cos x}{1 + \cos^3 x}; 2). y = 4\cos^3 x; 3). y = e^{\sqrt{tgx}}; 4)y = x^2 \sqrt{1 - x^2}.$
14	$1)y = \frac{\cos x}{1-\sin x}; 2). y = 4\cos^3 x; 3). y = e^{\sqrt{tgx}}; 4)y = x^2\sqrt{1-x^2}.$ Тема 12. Применение дифференциального исчисления.
	Найти пределы, используя правило Лопиталя:
	1. $\lim_{x \to \infty} \frac{1+4x-x^4}{x+3x^2+2x^4}$; 2. $\lim_{x \to 0} \frac{1-\cos 2x}{1-\cos 3x}$;
	3. $\lim_{x \to +0} \frac{\ln \sin x}{\ln \sin 5x}$; 4. $\lim_{x \to \infty} (x+1) e^{-x^2}$.
15	Тема 12. Применение дифференциального исчисления.
	Найти интервалы монотонности и экстремумы функции $y = x^3 - 3x^2 - 9x - 12$ Тема 12. Применение дифференциального исчисления.
16	Тема 12. Применение дифференциального исчисления.
	Найти наибольшее и наименьшее значение функции $y = x^3 - 3x^2 - 9x + 35$ на отрезке
	[-4; 4].
17	Тема 13. Функции двух и нескольких переменных. Частные производные.
	$z=lnrac{x}{y}$. Доказать, что $rac{\partial z}{\partial x}\cdot x+rac{\partial z}{\partial y}\cdot y=0.$
18	Тема 13. Функции двух и нескольких переменных. Производная по направлению и градиент.
	Найти $gradu$ и $\frac{\partial u}{\partial l}$ в точке $M_0(1;\frac{1}{2};-1)$, если $\vec{l}=O\vec{M}_0,\; u=\frac{z^2}{y}+xz.$
19	Тема 14. Экстремум функции нескольких переменных.
	Найти экстремумы функции $z = 2x - 2y - x^2 - y^2$.
20	Тема 14. Экстремум функции нескольких переменных.
	Найти наибольшее и наименьшее значения функции $z=x^2+2y^2+1$ в замкнутой области, ограниченной осями 0x, 0y и прямой x+y=3.
21	Тема 15. Неопределенный интеграл и его вычисление.
	Вычислить интеграл: $\int (x^4 + e^x)dx$
22	Тема 16. Основные классы интегрируемых функций
	Вычислить: 1. $\int \frac{e^{arctg(x)}}{1+x^2} dx$; 2. $\int (x+1)e^x dx$; 3. $\int \frac{2x+3}{x^2+3x-10} dx$.
23	Тема 17. Определенный интеграл. Несобственные интегралы.
	Вычислить $\int_{1}^{2} \ln x dx$
24	Тема 18. Приложения определенного интеграла.
	Вычислить площадь фигуры, ограниченной линиями $y = (x-1)^2$ и $y = 5 - x^2$.
25	Тема 20. Дифференциальные уравнения первого порядка.

	Найти общий интеграл уравнения $ydx+(1+x^2)dy=0$.
26	Тема 20. Дифференциальные уравнения первого порядка.
	Найти решение уравнения: $y' - \frac{2}{x}y = x$ удовлетворяющее начальным условиям $y _{x=1} = 2$
27	Тема 21. Дифференциальные уравнения второго порядка.
	Найти частное решение уравнения $(1+x^2)y''-2xy'=0$, удовлетворяющее начальным условиям $y _{x=1}=0$; $y' _{x=1}=1$.
28	Тема 22. Линейные дифференциальные уравнения второго порядка.
	Найти частное решение уравнения, удовлетворяющее указанным начальным условиям: $y'' - 5y' + 4y = 0$, $y _{x=0} = 5$, $y' _{x=0} = 8$
29	Тема 22. Линейные дифференциальные уравнения второго порядка.
	Найти общее решение уравнения $y'' - 3y' + 2y = (34 - 12x)e^{-x}$.
30	Тема 23. Числовые ряды.
	Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{n!}{n^3} = \frac{1}{1^3} + \frac{2!}{2^3} + \frac{3!}{3^3} + \dots + \frac{n!}{n^3} + \dots$
31	Тема 23. Числовые ряды.
	Исследовать сходимость ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln(n+2)}{n+2} = \frac{\ln 3}{3} - \frac{\ln 4}{4} + \ldots + (-1)^{n-1} \frac{\ln(n+2)}{n+2} + \ldots$
32	Тема 24. Функциональные ряды
	Найти интервал и радиус сходимости ряда
	$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} x^n = \frac{1}{3} x + \frac{1}{8} x^2 + \frac{1}{15} x^3 + \dots + \frac{1}{n(n+2)} x^n + \dots$
33	Тема 24. Функциональные ряды
	Разложить в ряд функцию $y = \frac{1 - e^{-x^2}}{x^2}$.