Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ				
Первый проректор, проректор п УР				
А.Е. Рудин	_			
«04» апреля 2023 года	«C			

Рабочая программа дисциплины

Б1.О.10	Матери	аловедение
Учебный план:		2023-2024 27.03.01 ИИТА Станд и серт ЗАО №1-3-156.plx
Кафедра:	41	Инженерного материаловедения и метрологии
Направление подготовки: (специальность)		27.03.01 Стандартизация и метрология
Профиль подготовки: (специализация)		Стандартизация и сертификация
Уровень обр	азования:	бакалавриат
Форма обучения:		заочная

План учебного процесса

Семес		Контроль,	Трудоё	Форма			
(курс для		Лекции	Лаб. занятия		час.	мкость, ЗЕТ	промежуточной аттестации
4	УΠ	4		32		1	
I	РПД	4		32		1	
2	УΠ	4	8	123	9	4	Экзамен
	РПД	4	8	123	9	4	Экзамен
Итого	УΠ	8	8	155	9	5	
VIIOIO	РПД	8	8	155	9	5	

стандартом высшего образования по направлению подготовки 27.03.01 Стандартизация и метрология, утверждённым приказом Министерства образования и науки Российской Федерации от 07.08.2020 г. № 901

Составитель (и):
кандидат технических наук, Доцент

Васильева
Владиславовна

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным

От кафедры составителя: Заведующий кафедрой инженерного материаловедения и метрологии	 Цобкалло Екатерина Сергеевна
От выпускающей кафедры: Заведующий кафедрой	Цобкалло Екатерина Сергеевна
Методический отдел:	

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать компетенции обучающегося в области материаловедения, взаимосвязи между строением и структуры различных материалов с их физико-механическими, технологическими и эксплуатационными свойствами материалов, их рационального выбора, создания материалов с заведомо заданными свойствами.

1.2 Задачи дисциплины:

рассмотреть взаимосвязь фундаментальных наук с материаловедением;

раскрыть принципы взаимосвязи структуры, строения металлов и сплавов и неметаллических материалов с их физико-механическими и технологическими свойствами;

показать особенности строения материалов и возможности их модифицирования с учетом функциональных особенностей при их использовании;

рассмотреть различные методы улучшения эксплуатационных свойств материалов путем введения легирующих элементов, а также на основе использования термической и химико-термической обработки;

раскрыть сущность и взаимосвязь структурных изменений с принципом поверхностного упрочнения деталей методами пластического деформирования

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Физика

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-2: Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических и естественнонаучных дисциплин

Знать: состав, структуру и свойства, а также взаимосвязь между структурой и свойствами различных материалов; теоретические основы и практику реализации различных способов получения и обработки материалов; пути воздействия на структуру материалов различными способами обработки для получения материалов с заданным уровнем свойств.

Уметь: использовать основные закономерности, действующие в процессе проектирования и изготовления продукции, для производства изделий требуемого качества

Владеть: навыками получения материалов с заданными характеристиками;

навыком выбора материалов и способов обработки в соответствии с их назначением и областью применения

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

	Семестр курс для 3AO)	Контактн работа	ая		14
Наименование и содержание разделов, тем и учебных занятий		Лек. (часы)	Лаб. (часы)	СР (часы)	Инновац. формы занятий
Раздел 1. Основы строения материалов и их свойства					
Тема 1. Основные понятия, цели и задачи курса «Материаловедение». Классификация свойств технических материалов. Основные свойства технических материалов. Структурные методы исследования.				2	ил
Тема 2. Кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия в кристаллах. Строение металлов. Дефекты строения металлов.	1	0,5		3	ил
Тема 3. Диффузионные процессы в металлах. Формирование структуры металлов при кристаллизации. Строение слитка металла. Полиморфные превращения.		0,5		3	ил
Раздел 2. Основы теории сплавов. Сплавы на основе железа. Виды обработки сплавов					

Тема 4. Понятие о металлических сплавах. Формирование структуры сплавов при кристаллизации. Диаграммы состояния сплавов и характер изменения свойств в зависимости от состава сплавов.		0,5		4	ил
Тема 5. Сплавы железа с углеродом. Основные структурные фазы и компоненты. Диаграммы состояния «железо-цементит» и «железо-графит». Углеродистые стали и чугуны. Влияние легирующих элементов на структуру и свойства стали. Классификация, маркировка и применение.		0,5		4	ил
Тема 6. Цветные металлы и сплавы на их основе.		0,5		4	ИЛ
Тема 7. Механические свойства материалов и методы их определения. Общие понятия о нагрузках, напряжениях, деформациях и разрушении материалов. Механические испытания, проводимые при статическом, динамическом и циклическом нагружениях.		0,5		4	ил
Тема 8. Формирование структуры деформированных металлов и сплавов. Влияние нагрева на структуру и свойства деформированного металла. Превращения в сталях при нагреве. Объемная термическая обработка: отжиг и нормализация, закалка, отпуск и старение.		0,5		4	ил
Тема 9. Термомеханическая обработка. Поверхностное упрочнение металлов и сплавов. Виды химико-термической обработки.		0,5		4	ил
Итого в семестре (на курсе для ЗАО)		4		32	
Консультации и промежуточная аттестация - нет		()		
Раздел 3. Конструкционные, электротехнические и неметаллические материалы					
Тема 10. Жаропрочные, жаростойкие, антикоррозионные сплавы. Материалы с высокой твердостью поверхности. Антифрикционные и фрикционные материалы. Инструментальные и штамповочные сплавы. Стали для инструментов холодной и горячей обработки давлением. Лабораторная работа. Изучение равновесных структур сталей и серых чугунов. Лабораторная работа. Построение кривых охлаждения железоуглеродистых сплавов по диаграммам состояния. Лабораторная работа. Определение деформационно-прочностных свойств металлов по диаграмме растяжения. Лабораторная работа. Изучение твердости металлов.	2	1	8	31	ил
Тема 11. Электротехнические материалы: полупроводниковые, проводниковые, диэлектрические, магнитные.		1		30	ИЛ

Тема 12. Полимеры и пластические массы. Термореактивные и термопластичные полимеры и пластические массы. Резины.		1		32	ИЛ
Тема 13. Композиционные материалы.		1		30	ИЛ
Итого в семестре (на курсе для ЗАО)		4	8	123	
Консультации и промежуточная аттестация (Экзамен)		2,	5	6,5	
Всего контактная работа и СР по дисциплине		18	,5	161,5	

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
	Устанавливает взаимосвязь между структурой материалов и их свойствами	
ОПК-2	IYADA MANMAANNASARSUNG HARRAYUACTEN DETSHEN	Вопросы устного собеседования Контрольная работа
	Правильно обосновывает выбор материала в процессе проектирования и изготовления продукции в целях производства изделий требуемого качества	

5.1.2 Система и критерии оценивания

Шкала оценивания	Критерии оценивания сформированности компетенций			
шкала оценивания	Устное собеседование	Письменная работа		
5 (отлично)	Полный, исчерпывающий ответ, явно демонстрирующий глубокое понимание предмета и широкую эрудицию в оцениваемой области. Критический, оригинальный подход к материалу. Практико-ориентированная задача решена верно, без ошибок, оформлена грамотно.			
4 (хорошо)	Ответ полный, основанный на проработке всех обязательных источников информации. Подход к материалу ответственный, но стандартный. Ответ в целом качественный, основан на всех обязательных источниках информации. Присутствуют небольшие пробелы в знаниях или несущественные ошибки. Практико-ориентированная задача решена с несущественными ошибками.			
3 (удовлетворительно)	Ответ воспроизводит в основном только лекционные материалы, без самостоятельной работы с рекомендованной литературой. Демонстрирует понимание предмета в целом, без углубления в детали. Присутствуют существенные ошибки или пробелы в знаниях по некоторым темам. Практико-ориентированная задача решена с ошибками, в оформлении допущены неточности.			

	собность ответить на вопрос без и экзаменатора. Незнание ельной части принципиально х элементов дисциплины нисленные грубые ошибки собность сформулировать хотя бь вные концепции дисциплины ко-ориентированная задача стью решена не правильно вко-ориентированная задача стью решена не правильно.	2 (неудовлетворительно)
--	--	-------------------------

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности

5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов			
	Kypc 1			
1	Основные свойства технических материалов и структурные методы их исследования			
2	Кристаллическое и аморфное строение вещества. Основные типы кристаллических решеток			
3	Дефектное строение кристаллов			
4	Особенности формирования структуры металлов при кристаллизации			
5	Полиморфные превращения в металлах			
6	Понятие о металлических сплавах. Формирование структуры сплавов при кристаллизации			
7	Принципы построения диаграмм состояния			
8	Диаграмма состояния сплавов системы «железо-углерод», основные структурные фазы и компоненты системы			
9	Углеродистые стали. Классификация, маркировка и применение			
10	Чугуны. Классификация, маркировка и применение			
11	Медь и сплавы на ее основе. Свойства, применение, маркировка			

12	Алюминий и сплавы на его основе. Свойства, применение, маркировка
13	Механические свойства материалов, полученные из статических методов испытаний
14	Механизмы возникновения и протекания упругой и пластической деформации
15	Влияние нагрева на строение и свойства деформированного металла
16	Фазовые превращения в сталях при термической обработке
17	Виды термической обработки стали и их применение
18	Виды химико-термической обрабтки стали и их применение
19	Термомеханическая обработка. Поверхностное упрочнение металлов и сплавов
20	Термомеханическая обработка. Поверхностное упрочнение металлов и сплавов
21	Диффузионные процессы в металлах
	Kypc 2
22	Жаропрочные, жаростойкие, антикоррозионные сплавы
23	Материалы с высокой твердостью поверхности
24	Антифрикционные и фрикционные материалы
25	Инструментальные и штамповочные сплавы. Стали для инструментов холодной и горячей обработки давлением
26	Полупроводниковые материалы. Свойства и применение
27	Диэлектрические материалы, их классификация и свойства
28	Электропроводящие материалы. Свойства и применение
29	Полимеры. Классификация, получение, свойства
30	Особенности ориентированного состояния полимеров. Свойства ориентированных полимеров
31	Свойства, получение, применение резин и каучуков
32	Определение термина композиционные материалы. Понятия матрицы и наполнителя
33	Классификация композиционных материалов. Виды структур композиционных материалов
34	Механические свойства волокнистых композиционных материалов

5.2.2 Типовые тестовые задания

Не предусмотрено

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

- 5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)
- 5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

5.3.2 Форма проведения промежуточной аттестации по дисциплине

Устная	×	Письменная	Компьютерное тестирование	Иная	

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

В течение семестра выполняются контрольные работы.

При проведении зачета время, отводимое на подготовку, составляет не более 15 минут. Учитываются результаты выполненных лабораторных работ.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка
6.1.1 Основная учеб	ная литература			
Цобкалло Е. С., Москалюк О. А., Юдин В. Е.	Механика полимерных композиционных материалов Ч.2. Матрицы и композиционные материалов на их основе	СПб.: СПбГУПТД	2016	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=3176
	Материаловедение специальных отраслей машиностроения	Санкт-Петербург: ХИМИЗДАТ	2016	https://www.iprbooks hop.ru/49796.html
Солнцев, Ю. П., Пряхин, Е. И., Солнцева, Ю. П.	Материаловедение	Санкт-Петербург: ХИМИЗДАТ	2020	http://www.iprbooksh op.ru/97813.html
	Механика полимерных композиционных материалов. Ч.1. Типы и свойства наполнителей		2015	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2662
6.1.2 Дополнительна	я учебная литература			
	Специальные материалы в машиностроении	Санкт-Петербург: ХИМИЗДАТ	2017	http://www.iprbooksh op.ru/67355.html
Васильева В. В., Петров Е. Н.	Материаловедение. Металлы и сплавы	СПб.: СПбГУПТД	2013	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=1753
Васильева В. В., Москалюк О. А.	Материаловедение. Ч.1. Лабораторный практикум	СПб.: СПбГУПТД	2013	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=1502
Васильева В. В.,	Материаловедение. Электротехнические материалы. Неметаллические материалы. Конспект	СПб.: СПбГУПТД	2013	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=1998

6.2 Перечень профессиональных баз данных и информационно-справочных систем

- 1. Электронно-библиотечная система IPRbooks (http://www.iprbookshop.ru).
- 2. Информационно-правовой портал ГАРАНТ [Электронный ресурс]. URL:http://www.garant.ru.
- 3. Компьютерная справочно-правовая система Консультант Плюс [Электронный ресурс]. URL:http://www.consultant.ru

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

Microsoft Windows

MicrosoftOfficeProfessional

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение
Лекционная аудитория	Мультимедийное оборудование, специализированная мебель, доска
Учебная аудитория	Специализированная мебель, доска

Приложение

рабочей программы дисциплины	Материаловедение		
по направлению подготовки	27.03.01 Стандартизация и метрология		
наименование ОП (профиля)	Стандартизация и сертификация		

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

№ п/п	Условия типовых практико-ориентированных заданий (задач, кейсов)				
1	Рассчитайте плотность никеля, используя рентгенографические данные: тип кристаллической				
	решетки – ГЦК, параметр элементарной ячейки а=3,524 Å, атомный вес 58,69. Сравните				
	полученное значение со справочным, объясните различие.				
2	Определить в соответствии с приведенной диаграммой состояния какой фазовый состав имеет сплав 80% Pb – 20% Sn при тем-ре 200 °C:				
	°C				
	327 300 H				
	200 \(\alpha \) \(\partial \partial \parti				
	$\frac{3+\lambda+\beta_{11}}{\lambda+\beta_{11}} = \frac{3+\beta+\lambda_{11}}{\lambda+\beta_{11}} + \beta+\lambda_{11}$				
	0 10 20 30 40 50 60 70 80 90 100				
	P8				
3	Постройте по диаграмме состояния Fe – FeC ₃ для сплава, содержащего 0,8% углерода, кривую				
	охлаждения, опишите структуру этого сплава при комнатной температуре, определите вид сплава				
	Жидкость + 1539 В В Жидкость				
	Феррит 1400 (1392) - 1300 (Жидкость +				
	1200 наустенит Жидкость + цемен- тит (первичный)				
	7 1200 — Ж.П.ДКОСТЬ + Цемен — ТИТ (первичный) — Г. П.				
	1000 — ————————————————————————————————				
	900 Аустенит + цементит + 15 + десерурит (А+Ц) Аустенит + десерурит (А+Ц)				
	+феррит 800				
	Феррит — 1 (ческий перичина) — 1 (ческий пе				
	червит — — — — — — — — — — — — — — — — — — —				
4					