Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖДАЮ							
Первый проректор, проректор п УР							
А.Е. Рудин							
«21»	02	2023 года					

Рабочая программа дисциплины

Б1.В.09	Композиционные материалы со специальными свойствами						
Учебный план:	2023-2024 18.03.01 ИПХиЭ НКиБ ОЗО №1-2-93.plx						
Кафедра:	32 Наноструктурных волокнистых и композиционных материалов им.						

Направление подготовки:

(специальность)

18.03.01 Химическая технология

Профиль подготовки:

Наноинженерия, композиты и биоматериалы

(специализация)

Уровень образования: бакалавриат

Форма обучения: очно-заочная

План учебного процесса

Семе	стр	Контактная обучающих	•	Сам.	Контроль,	Трудоё	Форма	
(курс для				час.	мкость, ЗЕТ	промежуточной аттестации		
10	УΠ	18	9	80,75	0,25	3	20uot	
10	РПД	18	9	80,75	0,25	3	Зачет	
Итого	УΠ	18	9	80,75	0,25	3		
VITOIO	РПД	18	9	80,75	0,25	3		

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 18.03.01 Химическая технология, утверждённым приказом Минобрнауки России от 07.08.2020 г. № 922

Составитель (и):	
доктор технических наук, Заведующий кафедрой	Лысенко Александр Александрович
доктор технических наук, Доцент	Анисимов Андрей Валентинович
Старший преподаватель	Лукичева Наталья Сергеевна
От кафедры составителя: Заведующий кафедрой наноструктурных волокнистых и композиционных материалов им. а.и.меоса	Лысенко Александр Александрович
От выпускающей кафедры: Заведующий кафедрой	Лысенко Александр Александрович
Методический отдел: 	

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Сформировать компетенции обучающегося в области разработки, анализа и исследования свойств полимерных композиционных и нанокомпозиционных материалов, применяемых в специальных областях науки и техники.

1.2 Задачи дисциплины:

- рассмотреть общие понятия о полимерных композиционных и нанокомпозиционных материалах специального назначения;
- познакомить с основными эксплуатационными характеристиками (физико-механическими, электрическими, термическими, химическими, биохимическими и др. свойствами) композитов специального назначения, а также с методами их определения и анализа ;
 - показать основные области применения композитов специального назначения.

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Промышленая экология производства композиционных материалов

Технология полимерных композиционных материалов

Получение наночастиц

Технология производства химических волокон — наполнителей для композиционных материалов

Технология получения биологически активных полимерных материалов

Процессы получения наноструктурных полимерных материалов

Методы исследования полимерных композиционных и нанокомпозиционных материалов

Производственная практика (технологическая (проектно-технологическая) практика)

Физика и химия полимеров, синтез, структура и свойства высокомолекулярных соединений

Физико-химия наноструктурных полимерных материалов

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ПК-3: Способен организовывать проведение испытаний технологических и функциональных свойств наноструктурированных композиционных материалов

Знать: комплексы эксплуатационных свойств композиционных материалов со специальными свойствами и методик их оценки с учетом нормативно-технических документов

Уметь: проводить анализ эксплуатационных характеристик композитов со специальными свойствами и оценивать влияние технологий и параметров их получения на свойства готовой продукции

Владеть: навыками работы на приборах для исследования эксплуатационных свойств композитов специального назначения

ПК-6: Способен измерять характеристики экспериментальных наноструктурированных композиционных материалов

Знать: основные эксплуатационные характеристики композиционных материалов со специальными свойствами и методики их оценки

Уметь: оценивать эксплуатационные характеристики полимерных композиционных и наноструктурированных композиционных материалов специального назначения.

Владеть: навыками измерения характеристик эксплуатационных свойств композиционных и наноструктурированных композиционных материалов специального назначения

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

		Контактн работа	ая		Инновац.	Форма
Наименование и содержание разделов, тем и учебных занятий	Семестр (курс для ЗАО)	Лек. (часы)	Пр. (часы)	СР (часы)	формы занятий	текущего контроля
Раздел 1. Общие понятия, подходы к классификации, классификация композиционных материалов специального назначения						
Тема 1. Понятие о композиционных материалах со специальными свойствами. Многообразие композитов специального назначения, области применения		1		5		0
Тема 2. Принципы и подходы к классификации композитов со специальными свойствами. Барьерные материалы. Практическое занятие: "Разнообразие композиционных материалов специального назначения, примеры,		1	1	6	ил	
основные термины и понятия". Раздел 2. Различные виды полимерных композиционных материалов со специальными свойствами						
Тема 3. Композиционные материалы со специальными физико-механическими свойствами; механические свойства полимерных блоков, волокон и композитов: прочность, модуль упругости, удельная прочность, удельный модуль упругости, текучесть, релаксация. Деформация и износостойкость. Прочность армирующих элементов композитов: тканей, нетканых материалов, трикотажа и т.д. Фрикционные и антифрикционные композиты.	10	4	2	13		
Практическое занятие: "Взаимосвязь структуры и свойств композиционных материалов: принципы разработки полимерных композиционных материалов с высокими физикомеханическими свойствами. Виды прочности. Методики определения и расчета физико- механических характеристик. Фрикционные и антифрикционные композиты".						Д
Тема 4. Сэндвичевые, сотовые и ячеистые материалы и конструкции. 3D-и nD- структуры, 3D-композиты. Практическое занятие: "Сэндвичевые и многослойные композиты: принципы создания, преимущества, области применения".		2	1	8,75		

	-			T	
Тема 5. Композиционные материалы для тепло-, термо- и огнезащиты. Принципы создания огне- и термостойких материалов. Методы повышения огнестойкости полимерных композиционных материалов. Практическое занятие: "Методы оценки и определения тепло-, термо-, огнезащитных свойств. Антипирены для полимеров и композитов: виды, принципы действия, синергетический эффект. Интумесцентные покрытия. Аэрогели. Абляционные покрытия".	2	1	9		
Тема 6. Электропроводящие и магнитоактивные материалы: полимеры, волокна, композиты. Способы получения, свойства и области применения					
Практическое занятие: "Электропроводность полимерных материалов: методики определения. Принципы создания диэлектрических, полупроводниковых и электропроводящих композитов. Композитные материалы для молниезащиты. Композиты с магнитными свойствами: примеры, способы получения, области применения".	2	1	8		
Тема 7. Биостойкость полимеров, волокон и композиционных материалов. Биоинертные, биоактивные, биоразрушаемые материалы: виды, способы получения, области применения. Биополимеры.	1		8		
Тема 8. Хемостойкость полимерных материалов и композитов. Устойчивость к действию агрессивных сред, электрохимическая устойчивость. Гидрофильность и гидрофобность. Практическое занятие: "Гидро- и лиофобные (фильные) полимерные материалы. Методы оценки хемостойкости, принципы улучшения/снижения хемо-, гидростойкости композиционных материалов. Области	1	1	7	ил	
применения". Раздел 3. Отдельные представители полимерных композиционных материалов специального назначения					
Тема 9. Оптические волокна и композиты с ними. Практическое занятие: "Способы получения, свойства и области применения оптоволокон и композитных материалов на их основе".	2	1	8		Д

Тема 10. Сорбционно-активные материалы и композиционные материалы на их основе. Сорбция, адсорбция, десорбция. Сорбенты: классификация, свойства. Иониты и углеродные сорбенты: получение, области применения. Практическое занятие: "Композитысорбенты: виды, свойства, способы получения, области применения"	2	1	8	ил	
Итого в семестре (на курсе для ЗАО)	18	9	80,75		
Консультации и промежуточная аттестация (Зачет)	0,2	25			
Всего контактная работа и СР по дисциплине	27,	.25	80,75		

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Курсовое проектирование учебным планом не предусмотрено

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
ПК-3	перечисляет основные эксплуатационные свойства композиционных материалов со специальными свойствами; дает классификацию композиционных материалов специального назначения; излагает методики, используемые для анализа свойств композиционных материалов; проводит анализ основных свойств композитов специального назначения, анализирует влияние технологии получения композита на его свойства; использует приборную базу для изучения эксплуатационных свойств композитов специального назначения, их прекурсоров.	Вопросы для устного собеседования. Практико-ориентированные задания
ПК-6	раскрывает основные характеристики полимерных композиционных материалов со специальными свойствами, которые необходимо усвоить для определения областей эксплуатации композитов; описывает методики, используемые для анализа композиционных материалов; оценивает эксплуатационные свойства полимерных композиционных и наноструктурированных композиционных материалов; применяет знания полученные при обучении для исследования эксплуатационных характеристик полимерных композиционных и наноструктурированных композиционных и	Вопросы для устного собеседования. Практико-ориентированные задания

5.1.2 Система и критерии оценивания

Шкала оценивания	Критерии оценивания сформированности компетенций					
шкала оценивания	Устное собеседование	Письменная работа				
Зачтено	Исчерпывающее владение понятиями курса: композиционные материалы со специальными свойствами, эксплуатационные свойства. Знание основных приемов анализа и исследования свойств полимерных композиционных материалов. Выполнение на должном уровне всех заданий по курсу.					
Не зачтено	Незнание основных положение и понятий по курсу, отсутствие понятий о различиях свойств и областей применения полимерных композиционных материалов. Не					

отвечает на преподавателя.		вопросы основных
заданий по курсу	cy.	

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов						
Семестр 10							
1	Понятие о полимерных композиционных материалах специального назначения. Примеры вариантов классификаций.						
2	Барьерные композиты: виды и области применения						
3	Многослойные полимерные композиционные материалы (ПКМ), сэндвичевые ПКМ: технологии получения, свойства, области применения.						
4	1D и 2D – композиты, получение, области использования, свойства.						
5	3D-структуры как наполнители для полимерных композиционных материалов и углерод-углеродных композиционных материалов. Свойства, области применения композиционных материалов (КМ) с 3D-наполнителями.						
6	Абляция. Материалы и композиты, препятствующие абляции: получение, области использования, конкретные примеры применения.						
7	Биоразлагаемые полимеры: виды, свойства, области использования.						
8	Биологически активные полимеры и композиты: виды, свойства, области использования.						
9	Композитные материалы в медицине: конкретные примеры, классификация, области применения.						
10	Огнезащита, антипирены и их классификация, интумесцентные материалы и покрытия.						
11	Синергические эффекты при использовании антипиренов: конкретные примеры.						
12	Огнеупорные и теплозащитные композиционные материалы, аэрогели и композиты на их основе: свойства.						
13	Оптически-активные композиты: классификация, способы получения, области применения, конкретные примеры.						
14	Ячеистые композиты: виды, классификация, технологии получения, области использования, свойства, конкретные примеры.						
15	Сорбционно-активные материалы и полимерные композиционные материалы на их основе: технологии получения, свойства, применение.						
16	Теплозащитные композиционные и полимерные композиционные материалы: конкретные примеры, классификация, технологии получения, свойства.						
17	Углеродные сорбенты: гранульные и волокнистые, конкретные примеры, классификация, свойства, композиты на основе углеродных сорбентов, получение.						
18	Фрикционные/антифрикционные материалы и покрытия, антифрикционные полимерные композиционные материалы: конкретные примеры, области применения (конкретные примеры).						
19	Электропроводящие композиционные материалы (ПКМ): конкретные примеры получения и областей применения, свойства.						
20	Оптоволокна. Композиты на их основе. Способы получения, свойства, области применения.						
21	Металлсодержащие композиционные материалы и нанокомпозиты: получение, свойства, области использования.						
22	Фторполимерные композиты (композиционные материалы с фторопластовыми наполнителями и матрицами).						
23	Композиционные материалы, содержащие наночастицы углерода: получение, свойства и области использования.						
24	Экстремальные эксплуатационные характеристики углеродных волокон и углепластиков.						
25	Сравнительный анализ характеристик углепластиков и углерод-углеродных композиционных материалов.						
26	Сравнительный анализ эксплуатационных свойств непрерывно- и дисперснонаполненных композиционных материалов. Роль структуры композиционного материала.						
27	Гидрофобные и гидрофильные материалы. Способы придания гидрофобности.						
28	Сравнительный анализ прочностных характеристик различных видов непрерывных наполнителей: тканей, трикотажа, однонаправленных лент, 3D-изделий, нетканых материалов и т.д.						
29	Устойчивость полимеров и композитов к действию агрессивных сред. Хемостойкость.						
30	Взаимосвязь структуры и свойств полимерных композиционных материалов. Показать на конкретных примерах и цифрах.						

5.2.2 Типовые тестовые задания

Не предусмотрены

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

- 1. Обосновать выбор связующего при получении УУКМ для термозащиты из следующего ряда:
- -поливиниловый спирт (ПВС),
- -фенолформальдегидная смола (ФФС),
- -эпоксидная смола (ЭС).
- 2. Обосновать выбор углеродного наполнителя для получения УУКМ для модулей электроустановок водородной энергетики из следующего ряда:
 - ткань из полипропилена (ТП),
 - ткань из углеродного волокна (ТУВ),
 - нетканый материал из углеродного волокна (НУВ).
- 3. Обоснуйте, как следует действовать для повышения огнестойкости поливинилхлоридных материалов и композитов на их основе.
 - 4. Нарисовать картинку с каплей воды на поверхности гидрофильного и гидрофобного материалов.
- 5. Рассчитать степень набухания полимерного материала в растворителе. Если до контакта с растворителем его объем (V1) составлял 5 см3, а после контакта объем (V2) 7 см3
- 6. Нарисовать принципиальную схему и объяснить принцип определения сопротивления четырех контактным методом.
 - 7. Рассчитайте площадь поверхности частицы углерода кубической формы и длиной ребра 1 см.
- 8. Рассчитайте какой из наполнителей обладает большей удельной прочностью и во сколько раз: 1) Углеродное волокно. Прочность на растяжение 2,5 ГПа, плотность 1,9 г/см³;
 - 2) Стекловолокно. Прочность на растяжение 2.5 ГПа. плотность 2.5 г/см³.
- 9. Прочность на растяжение композита (волокна) равна 0,5 ГПа (G). Рассчитать удельную прочность композита, если его плотность (d) составляет 1 г/см3
- 10. Какова кинетика набухания образца полимера, если исходная масса составила 0,1 г, после 5 мин контакта с раствором 0,125 г, после 10 мин 0,175 г, после 20 мин 2,0 г, после 30 мин 2,1 г. Выразить графически.
- 11. Нарисовать кривые (графики) кинетики набухания ограниченно, неограниченно набухающих полимеров и полимера, набухающего с контракцией.
 - 12. Защитное действие антипиренов NH4Cl и Al(OH)3. Реакции, объясняющие их действие.
- 13. Рассчитать удельную поверхность 1 г углеродных нановолокон плотностью 1 г/см3 и диаметром 100 нм (площадь торцевых поверхностей не учитывать).
- 14. Рассчитать кажущуюся плотность композита с матрицей из полипропилена высокого давления (ПВД), содержащего 10% УНТ с плотностью 1,38 г/см3.

5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)

5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

Проведение промежуточной аттестации регламентировано локальным нормативным актом СПбГУПТД «Положение о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся»

5.3.2 Форма проведения промежуточной аттестации по дисциплине Устная + Письменная Компьютерное тестирование Иная

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

Время подготовки ответа на билет 40 мин. Время устного ответа на билет – до 30 мин.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка						
6.1.1 Основная учебы	.1.1 Основная учебная литература									
О.В.Асташкина, А.А.Лысенко, Н.Ф. Уварова, Д.А.Петрова	Практические аспекты сорбционных процессов	Санкт-Петербург: СПбГУПТД	2022	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=202245						
Петрова	•	- Санкт-Петербург: СПбГУПТД	2022	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=202244						

,	Технология полимерных композиционных			http://publish.sutd.ru/ tp_ext_inf_publish.ph
Лысенко А. А., Ширшова Е. П.	материалов. Дисперсно- наполненные композиционные материалы.	Санкт-Петербург: СПбГУПТД	2021	p?id=2021162
6.1.2 Дополнительна	я учебная литература			•
	Композиционные барьерные материалы	СПб.: СПбГУПТД	2015	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2940
Лысенко А.А., Асташкина О.В.,	Физико-химические основы получения наноструктурных полимерных материалов. Углеродные материалы, дисперсии и нанокомпозиты. Рекомендованная терминология	СПб.: СПбГУПТД	2018	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2018224
Буринский С. В.,	Полимерные композиционные материалы со специальными свойствами. Бумаги со специальными свойствами.		2018	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2018228
	Технология полимерных композиционных материалов Углеродуглеродные композиционные материалы. Получение, свойства, области применения	СПб.: СПбГУПТД	2015	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2919
,	Каталитически-активные наноматериалы, получение, свойства. Металлсодержащие углеродные материалы	СПб.: СПбГУПТД	2016	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=3321
Асташкина О. В., Лысенко А. А., Дианкина Н. В., Тагандурдыева Н., Кузнецов А. Ю.	Нано-микропористые полимерные материалы	СПб.: СПбГУПТД	2019	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2019139
Лысенко А.А.,	Полимерные композиционные материалы со специальными свойствами. Сорбционно-активные композиционные материалы	СПб.: СПбГУПТД	2018	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2018223
Корнилов, А. В.,	Технология наномодифицированных неорганических композиционных материалов из техногенного и природного сырья	Казань: Казанский национальный исследовательский технологический университет	2015	http://www.iprbooksh op.ru/63497.html
	Технология склеивания изделий из композиционных материалов	Казань: Казанский национальный исследовательский технологический университет	2014	http://www.iprbooksh op.ru/63504.html

Асташкина О. Лысенко А. Дианкина Н. Тагандурдыева Кузнецов А. Ю.	A., B.,	Сорбционно-активные наноматериалы	Санкт-Петербург: СПбГУПТД	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2019137
Лысенко Асташкина Кузнецов Уварова Н.Ф.	О.В., А.Ю.,	Технология полимерных композиционных материалов. Получение композиционных материалов темплатным методом	СПб.: СПбГУПТД	http://publish.sutd.ru/ tp_ext_inf_publish.ph p?id=2018226

6.2 Перечень профессиональных баз данных и информационно-справочных систем

Информационная система «Единое окно доступа к образовательным ресурсам. Раздел. Информатика и информационные технологии» [Электронный ресурс]. URL: http://window.edu.ru/catalog/?p_rubr=2.2.75.6

База данных Минэкономразвития РФ «Информационные системы

Министерства в сети Интернет» [Электронный ресурс]. URL: http://economy.gov.ru/minec/about/systems/infosystems/

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

MicrosoftOfficeProfessional

Microsoft Windows

Эколог, ПДВ – Эколог, Котельные, АТП – Эколог

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение		
Учебная аудитория	Специализированная мебель, доска		
Компьютерный класс	Мультимедийное оборудование, компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду		