Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» (СПбГУПТД)

УТВЕРЖ,	ДАЮ
Первый проректор, УР	проректор по
	А.Е. Рудин
«21» 02 2023 года	

Рабочая программа дисциплины

Б1.В.08 Современные методы в управлении электромеханическими системами

Учебный план: 2023-2024 15.04.04 ИИТА Автоматизация и управление OO №2-1-88.plx

Кафедра: 1 Автоматизации производственных процессов

Направление подготовки:

(специальность)

15.04.04 Автоматизация технологических процессов и производств

Профиль подготовки:

(специализация)

Автоматизация и управление

Уровень образования: магистратура

Форма обучения: очная

План учебного процесса

Семе	ΥTN.	Контактная работа обучающихся		Сам.	Контроль,	Трудоё	Форма	
(курс для ЗАО		Лекции	Практ. занятия	Лаб. занятия	работа	час.	мкость, ЗЕТ	промежуточной аттестации
3	УΠ	17	17	17	92,75	0,25	4	Зачет
3	РПД	17	17	17	92,75	0,25	4	Sayer
4	УΠ	9	18	9	32,75	3,25	2	Курсовой проект,
4	РПД	9	18	9	32,75	3,25	2	Зачет
Итого	УΠ	26	35	26	125,5	3,5	6	
VITOIO	РПД	26	35	26	125,5	3,5	6	

и производств, утверждённым приказом Минобрнауки России от 25.11.2020 г. № 1452

Составитель (и):
кандидат технических наук, Доцент

От кафедры составителя:
Заведующий кафедрой автоматизации
производственных процессов

Шапошников Александр Леонидовмч

Энтин Виталий Яковлевич

Энтин Виталий

Яковлевич

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 15.04.04 Автоматизация технологических процессов

Методический отдел:

От выпускающей кафедры:

Заведующий кафедрой

1 ВВЕДЕНИЕ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

1.1 Цель дисциплины: Подготовка студента к самостоятельному решению теоретических и прикладных задач с использованием современных методов в управлении электромеханическими системами в текстильной, легкой промышленности и производстве химических волокон.

Сформировать компетенции обучающегося в области электромеханических систем

1.2 Задачи дисциплины:

Освоить принципы построения современных электромеханических систем.

Изучить математические модели и характеристики современных электромеханических систем.

Знать современные методы управления электромеханическими системами

1.3 Требования к предварительной подготовке обучающегося:

Предварительная подготовка предполагает создание основы для формирования компетенций, указанных в п. 2, при изучении дисциплин:

Робототехнические комплексы и микропроцессорные системы локальной автоматизации

Современные проблемы автоматизации и управления

2 КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ПК-1: Способен разрабатывать комплект конструкторской документации автоматизированной системы управления технологическими процессами

Знать: состав структурных и функциональных схем систем автоматического управления электромеханическими системами

Уметь: определять состав и содержание структурных и функциональных схем систем автоматического управления электромеханическими системами, пользоваться методами создания и исследования систем управления электромеханическими системами

Владеть: навыками разработки автоматизированных систем управления технологическими процессами с использованием электромеханических систем

3 РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

		Контакть	ая работ	a			
Наименование и содержание разделов, тем и учебных занятий	Семестр (курс для 3AO)	Лек. (часы)	Пр. (часы)	Лаб. (часы)	СР (часы)	Инновац. формы занятий	Форма текущего контроля
Раздел 1. Механика электропривода							
Тема 1. Структурная схема электрического привода		2	2	2	10		
Тема 2. Уравнение движения электропривода.		2	2	2	10		C,3
Тема 3. Механические характеристики двигателей и исполнительных органов.		2	2	2	10	ИЛ	
Раздел 2. Регулирование координат электропривода							
Тема 4. Основные показатели регулирования скорости электропривода		2	2	2	10		
Тема 5. Механические характеристики и регулировочные свойства двигателей постоянного тока.	3	2	2	2	10		C,3
Тема 6. Современные методы управления электромеханическими системами с двигателем постоянного		4	4	4	20		
Тема 7. Механические характеристики и регулировочные свойства двигателей переменного тока		3	3	3	22,75	ил	
Итого в семестре (на курсе для ЗАО)		17	17	17	92,75		
Консультации и промежуточная аттестация (Зачет)			0,25				
Раздел 3. Системы автоматического управления электромеханическими системами с двигателями постоянного тока							дз
Тема 8. Функциональные схемы систем автоматического регулирования скорости двигателя постоянного тока		2	4	2	9		

Тема 9. Исследование САР скорости двигателя постоянного тока с различными звеньями корректирующей	2	4	2	9	ИЛ	
Раздел 4. Системы автоматического управления электромеханическими системами с двигателями переменного тока						
Тема 10. Функциональные схемы систем автоматического регулирования скорости двигателя переменного тока	2	4	2	9		дз
Тема 11. Исследование САР скорости двигателя переменного тока с различными звеньями корректирующей обратной связи	3	6	3	5,75	ИЛ	
Итого в семестре (на курсе для ЗАО)	9	18	9	32,75		
Консультации и промежуточная аттестация (Курсовой проект, Зачет)		3,25				
Всего контактная работа и СР по дисциплине		90,5		125,5		

4 КУРСОВОЕ ПРОЕКТИРОВАНИЕ

4.1 Цели и задачи курсовой работы (проекта): Цель курсового проекта научить студентов обоснованно выбирать автоматизированный электропривод с двигателем постоянного тока, уметь выбирать способ регулирования его скорости, уметь рассчитать переходный процесс, оценить энергетические показатели, сделать тепловой расчет.

Уметь составлять и исследовать САР скорости электродвигателей при различных типах звеньях в цепи корректирующей обратной связи

- **4.2 Тематика курсовой работы (проекта):** 1.Расчёт характеристик автоматизированного электропривода с двигателем постоянного тока
- 2. Разработка САР скорости электродвигателей с различными типовыми звеньями в цепи корректирующей обратной связи
 - 4.3 Требования к выполнению и представлению результатов курсовой работы (проекта):

Предусмотрено использование ЭВМ при выполнении курсовой работы. Объем пояснительной записки 25-30 листов формата A4, количество чертежей 1 формата A2.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

5.1 Описание показателей, критериев и системы оценивания результатов обучения

5.1.1 Показатели оценивания

Код компетенции	Показатели оценивания результатов обучения	Наименование оценочного средства
ПК-1	Строит основные характеристики электропривода и схемы защиты Проволит анапиз характеристик электропривола	Вопросы для устного собеседования Практико- ориентированные задания

5.1.2 Система и критерии оценивания

Шкада ополивания	Критерии оценивания сф	ормированности компетенций
Шкала оценивания	Устное собеседование	Письменная работа

5 (отлично)		При оценивании курсового проекта. Студент глубоко проработал состояние разработок по заданному направлению. С учетом воспринятого опыта предложил свое решение с некоторой новизной, дающей дополнительные преимущества разрабатываемой системе автоматизации элетропривода. Все вопросы задания выполнены . Работа выполнена в точном соответствии с рекомендуемыми методами. Отчет выполнен грамотно с достаточным количеством расчетного и графического материала.
4 (хорошо)		При оценивании Курсового проекта. Студент проработал состояние разработок по заданному направлению. С учетом воспринятого опыта предложил стандартное решение при разработке системы автоматизации электроапривода. Все вопросы задания выполнены в соответствии с рекомендуемыми методичками и методами. Однако в расчетах содержатся неточности. Отчет выполнен грамотно с достаточным количеством расчетного и графического материала.
3 (удовлетворительно)		При оценивании Курсового проекта. Студент проработал состояние разработок по заданному направлению. С учетом воспринятого опыта предложил стандартное решение при разработке системы автоматизации. Все вопросы задания выполнены в соответствии с рекомендуемыми методичками и методами. Однако в расчетах содержатся значительные, неточности, влияющие на результат расчета системы
		количеством расчетного и графического
2 (неудовлетворительно)		материала При оценивании Курсового проекта. Студент недостаточно проработал состояние разработок по заданному направлению. Предложил стандартное решение при разработке системы автоматизации. Все вопросы задания выполнены не полностью. Рекомендуемые методичками методы применены с ошибками, в расчетах содержатся значительные, неточности, влияющие на результат расчета системы
Зачтено	Полный, исчерпывающий ответ, явно демонстрирующий глубокое понимание предмета и широкую эрудицию в оцениваемой области. Критический, оригинальный подход к материалу.	
Не зачтено	Неспособность ответить на вопрос без помощи экзаменатора. Незнание значительной части принципиально важных элементов дисциплины. Многочисленные грубые ошибки	

5.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности5.2.1 Перечень контрольных вопросов

№ п/п	Формулировки вопросов
	Семестр 3
1	Структурная схема электрического привода
2	Уравнение движения электропривода
3	Расчётные схемы механической части электропривода
4	Определение приведённого момента инерции J
5	Задача. Для схемы на рис.1 определить приведённый момент инерции в случае подъёма груза при следующих параметрах: Jд=0,15 кг·м2; J1=0,05 кг·м2; J2=1,5 кг·м2; m=400 кг; RБ=0.15 м; Z3=25; Z4=150
6	Определение приведённого момента нагрузки Мс
7	Задача. Для схемы на рис.1 рассчитать приведённый момент нагрузки Мс в случае подъёма груза при следующих параметрах: m=300 кг; RБ=0.1 м; Z3=25; Z4=75; ηp=0,95; ηБ=0,90
8	Механические характеристики двигателей и исполнительных органов
9	Переходные процессы при линейных механических характеристиках двигателя и исполнительного органа
10	Задача. Используя аналитическое решение, выполнить расчёт и построение кривой переходного процесса ω(t) при линейных механических характеристиках двигателя и исполнительного органа и следующих данных ωнач=0; ωуст=160 рад/с; Мнач= Мкз=80 H·м; Муст= =Мс0=40H·м; Ј=0,1 кг·м2. Оценить практическое время переходного процесса
11	Переходные процессы при нелинейном динамическом моменте
12	Графически даны (на рис.) механическая характеристика двигателя 1 и исполнительного органа 2. Момент инерции электропривода равен ; J=0,05 кг⋅м2. Получить графическую зависимость ω(t) при пуск двигателя, применяя численный метод интегрирования Эйлера
13	Регулирование скорости электропривода
14	Основные показатели регулирования скорости электропривода
15	Схемы включения двигателей постоянного тока
16	Уравнение механической характеристики двигателя постоянного тока
17	Механические характеристики ДПТ независимого возбуждения
18	Задача. Дано: двигатель постоянного тока со следующими паспортными (номинальными) данными: Рном=0,2 кВт; пном=1400 об/мин; Uном=220 В; Iном=1,5 А. Рассчитать и построить естественную механическую характеристику
19	Регулирование скорости ДПТ независимого возбуждения изменением сопротивления в цепи якоря
	Расчёт регулировочных резисторов в цепи якоря ДПТ НВ

21	Задача. Дано: двигатель постоянного тока со следующими паспортными (номинальными) данными: Рном=0,4 кВт; пном=940 об/мин; Uном=220 В; Іном=2,5 А и рабочая точка А с координатами ωи=75 рад/с, Ми=2,3 Н⋅м. Определить сопротивление резистора включение которого в цепь якоря обеспечит прохождение искусственной механической характеристики через т. А. Построить естественную и искусственную механические характеристики
22	Регулирование скорости ДПТ независимого возбуждения изменением напряжения на якоре
23	Регулирование скорости ДПТ независимого возбуждения изменением потока возбуждения
24	Задача. Дано: : двигатель постоянного тока со следующими паспортными (номинальными) данными: Рном=0,2 кВт; пном=980 об/мин; Uном=220 В; Іном=1,5. Определить ток возбуждения Ів.и, при котором искусственная механическая характеристика пройдёт через т. А с координатами ωи=140 рад/с, Ми=1,5 Н⋅м. Построить естественную и искусственную механические характеристики
25	Регулирование тока при пуске ДПТ НВ
26	Система «генератор-двигатель»
	Семестр 4
27	Система «управляемый выпрямитель-двигатель постоянного тока» (УВ-ДПТ)
28	Система «тиристорный преобразователь-двигатель постоянного тока» (ТП-Д)
29	Асинхронные трёхфазные двигатели
30	Уравнение механической характеристики асинхронного двигателя
31	Способы регулирования координат асинхронных двигателей
32	Система регулирования «тиристорный регулятор напряжения-асинхронный двигатель»
33	Система регулирования «преобразователь частоты-асинхронный двигатель»(ПЧ-АД)
34	Задачи проектирования электропривода рабочих механизмов

35	Основные сведения о процессах взаимодействия элементов машин переменного тока
36	Вращающееся магнитное поле
37	Основные типы электрических машин переменного тока
38	Конструктивные особенности и принцип действия синхронного двигателя
39	Пуск синхронного двигателя
40	Синхронные реактивные двигатели
41	Электродвигатель с обращённым ротором
42	Синхронные двигатели с постоянными магнитами
43	Основная математическая модель СРД в фазной системе координат
44	Магнитное поле и обмотки машин переменного тока

5.2.2 Типовые тестовые задания

5.2.3 Типовые практико-ориентированные задания (задачи, кейсы)

1 Конкретная ситуация: рассчитанный и выбранный электродвигатель постоянного тока должен обеспечить работу механизма на заданной скорости шзад с заданным моментом нагрузки Мс,зад. Как определить какой способ регулирования скорости двигателя обеспечит оптимальный результат?

Необходимо построить искусственные характеристики, проходящие через заданные координаты шзад и Мс, зад для случаев регулировании скорости двигателя тремя способами:

включением в цепь якоря добавочного резистора Rдоб,

изменением напряжения на якоре Uя,

изменением потока возбуждения Фв.

Провести анализ полученных результатов и выбрать наилучший способ исходя из полученных результатов.

2 Конкретная ситуация: известен статический момент сопротивления приводного механизма Мс. Как осуществить пуск асинхронного двигателя (АД) соединенного с таким механизмом?

Во-первых, для пуска электродвигателя нужно, чтобы развиваемый им начальный пусковой момент Мп был больше статического момента сопротивления приводимого им механизма Мс и, во-вторых, чтобы АД достиг заданной частоты вращения, необходимо, чтобы развиваемый им момент был больше статического момента сопротивления механизма в течение всего периода пуска при изменении частоты вращения от нуля до номинальной.

В АД с фазным ротором для увеличения пускового момента нужно увеличить активное сопротивление обмотки ротора включением пускового реостата в фазную обмотку ротора. При этом уменьшается и пусковой ток.

Для АД с короткозамкнутым ротором наиболее распространенным способом пуска является прямой пуск от напряжения сети.

На практике при прямом пуске бывает необходимо ограничить пусковой ток или пусковой момент Мп. В этом случае могут применяться следующие способы пуска:

- 1 переключение обмотки статора со звезды на треугольник;
- 2 пуск через тиристорный регулятор напряжения.
- 3 Конкретная ситуация: Необходимо выбрать серийный электродвигатель для совместной работы с производственным механизмом. Какие при этом учитываются показатели? И какой порядок выбора?

При выборе серийных двигателей учитываются следующие показатели:

- 1. Род тока. Двигатель должен иметь род и величину напряжения, соответствующее сетям предприятия.
- 2. Скорость. Выбор номинальной скорости двигателя проводится по заданной скорости исполнительного органа и передаточному числу редуктора.
 - 3. Способ вентиляции и защиты от действия окружающей среды.

Порядок выбора электродвигателя следующий:

- 1) расчет мощности и предварительный выбор двигателя;
- 2) проверка выбранного двигателя по условиям пуска и перегрузки;
- 3) проверка выбранного двигателя по нагреву.

Если выбранный в п.1 двигатель удовлетворяет условиям пп.2 и 3, то на этом выбор заканчивается. Если не удовлетворяет условиям пп.2 и 3, то выбирают другой двигатель и проверка повторяется. Работа с литературой,

5.3 Методические материалы, определяющие процедуры оценивания знаний, умений, владений (навыков и (или) практического опыта деятельности)

5.3.1 Условия допуска обучающегося к промежуточной аттестации и порядок ликвидации академической задолженности

∩КГУПТД

				грегламентировано локальным певаемости и промежуточной атт	•		
5.3.2 Форма проведения промежуточной аттестации по дисциплине							
Устная	+	Письменная		Компьютерное тестирование		Иная	

5.3.3 Особенности проведения промежуточной аттестации по дисциплине

На подготовку выделяется 30 минут.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Учебная литература

Автор	Заглавие	Издательство	Год издания	Ссылка
6.1.1 Основная учебы	ная литература			
	Асинхронный электропривод горных машин с тиристорными коммутаторами	Донецк: Издательство «Донецкая политехника», Донецкий национальный технический университет	2020	http://www.iprbooksh op.ru/105811.html
Сеньков, А. Г., Дайнеко, В. А.	Электропривод и электроавтоматика	Минск: Республиканский институт профессионального образования (РИПО)	2020	http://www.iprbooksh op.ru/100379.html
Базулина, Т. Г., Равинский, Н. А.	Основы электропривода	Минск: Республиканский институт профессионального образования (РИПО)	2020	http://www.iprbooksh op.ru/100368.html
Литвиненко, А. М.	Исполнительный привод	Воронеж: Воронежский государственный технический университет, ЭБС АСВ	2020	http://www.iprbooksh op.ru/100444.html
Литвиненко, А. М.	Исполнительный привод	Москва: Ай Пи Ар Медиа	2021	http://www.iprbooksh op.ru/108367.html
	я учебная литература			
Симаков, Г. М.	Автоматизированный электропривод в современных технологиях	Новосибирск: Новосибирский государственный технический университет	2014	http://www.iprbooksh op.ru/45354.html
	Автоматизированный электропривод	Новосибирск: Новосибирский государственный технический университет	2014	http://www.iprbooksh op.ru/45355.html

6.2 Перечень профессиональных баз данных и информационно-справочных систем

Интернет-ресурсы: www.mzta.ru, www.automatika.ru,

Информационная система «Единое окно доступа к образовательным ресурсам. Раздел. Информатика и информационные технологии» [Электронный ресурс]. URL: http://window.edu.ru/catalog/?p_rubr=2.2.75.6

Электронно-библиотечная система IPRbooks [Электронный ресурс]. URL: http://www.iprbookshop.ru/

Компьютерная справочно-правовая система КонсультантПлюс [Электронный ресурс]. URL: http://www.consultant.ru

6.3 Перечень лицензионного и свободно распространяемого программного обеспечения

Microsoft Windows

MicrosoftOfficeProfessional

6.4 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория	Оснащение
	Мультимедийное оборудование, компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно- образовательную среду
Учебная аудитория	Специализированная мебель, доска